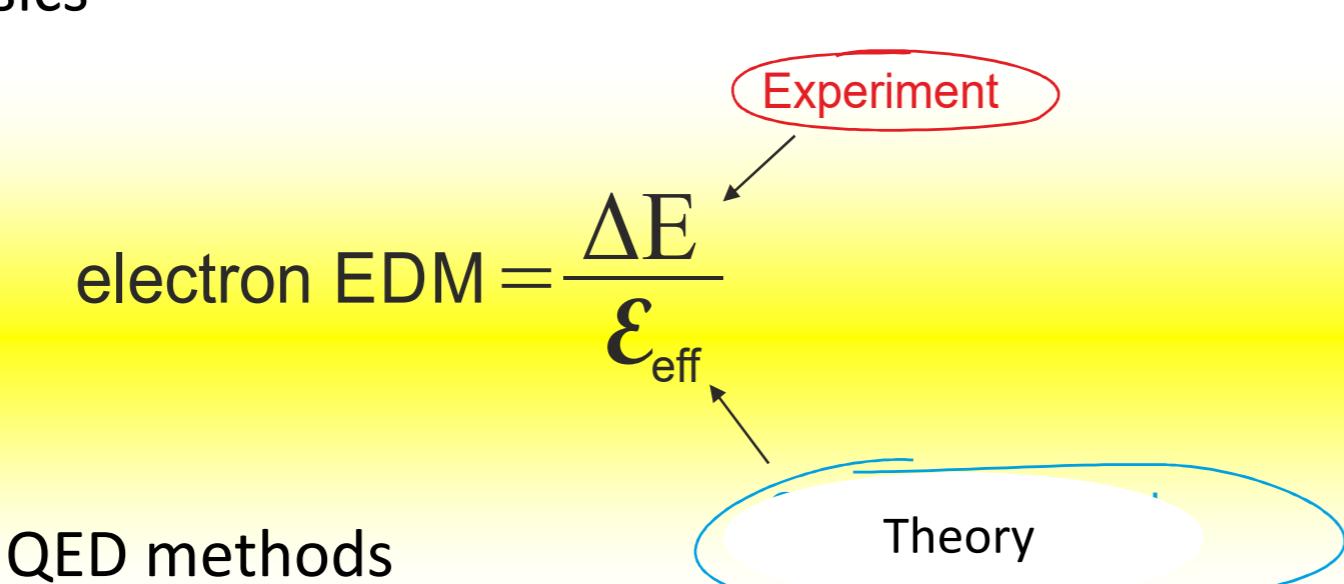

Nuclear magnetization distribution effect in molecules and atoms

Leonid V. Skripnikov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC «Kurchatov Institute»


INTRODUCTION & AIM

Hyperfine structure and the nuclear magnetization distribution effect in molecules and atoms

Why do we need HFS?

- ✓ Probe the accuracy of calculated atomic and molecular constants characterizing symmetry-violating effects in searches for New physics

- ✓ Probe of bound-state QED methods

- ✓ Study of the nuclear structure: valence nucleon configuration, nuclear many-body effects, etc.

METHOD

Hyperfine interaction in the point magnetic dipole approximation:

$$H_{HFI} = \mu \cdot \frac{[r \times \alpha]}{r^3} \quad \rightarrow \quad A^{(0)} = \frac{\mu}{I\Omega} \left\langle \Psi_{\Omega} \left| \frac{[r \times \alpha]_z}{r^3} \right| \Psi_{\Omega} \right\rangle$$

Hyperfine interaction with finite nuclear magnetization distribution:

$$H_{HFI} = \mu F(r) \cdot \frac{[r \times \alpha]}{r^3} \quad \rightarrow \quad A = A^{(0)} - A^{BW}$$

$$A^{(BW)} = \frac{\mu}{I\Omega} \left\langle \Psi_{\Omega} \left| \frac{[r \times \alpha]_z}{r^3} (1 - F(r)) \right| \Psi_{\Omega} \right\rangle$$

➤ **F(r) is the nuclear magnetization distribution function.**

➤ 1- F(r) is localized inside the nucleus

➤ **We do not know F(r) accurately, but this is not important!**

Factorization of the BW effect contribution to the hyperfine structure constant [1]:

$$A^{BW} = \frac{\mu}{I\Omega} (\mathcal{P}_s + \beta \mathcal{P}_p) B_s \quad B_s = \frac{1}{2\mu} A_{BW} (\text{H-like ion})$$

Pure electronic part

Universal nuclear-model-dependent parameter for a given heavy element

The BW effect A^{BW} can be factorized into purely electronic and nuclear-dependent parts B_s due to [1]:

- 1.) only $s_{1/2}$ and $p_{1/2}$ states contribute to the BW effect.
- 2.) all $ns1/2$ -type functions are proportional to the $1s1/2$ H function within the nucleus; all $np1/2$ -type functions are proportional to the $2p1/2$ H function within the nucleus.
- 3.) Special symmetry properties of the hyperfine interaction operator $A^{BW}(2p1/2) \sim A^{BW}(1s1/2)$.

RESULTS & DISCUSSION

I. We combine electronic-structure coupled-cluster theory (CCSDT(Q)) with experiment to extract the B_s parameter (the BW effect for H-like ^{225}Ra) [1]

$$A^{BW} = A_{theory}^{(0)} - A(\text{Ra}^+)_exp$$

$B_s(^{225}\text{Ra})$ [F(r) for ^{225}Ra]

TABLE II. BW contributions A^{BW} , $A^{BW,s}$, and $A^{BW,p}$ and the final values of the hyperfine structure constants (in MHz) for the ground and excited states of the $^{225}\text{Ra}^+$ cation. For the ground state, A^{BW} has been obtained as a difference between the theoretical value of the HFS constant calculated in the point magnetic dipole approximation and the experimental value taking into account QED and Breit effects.

	$7s^2S_{1/2}$	$7p^2P_{1/2}$	$7p^2P_{3/2}$
$-A^{BW,s}$	1214	-5	3
$-A^{BW,p}$	1	80	0
$-A^{BW}$	1215	75	2
$A^{(0)}$ (see Table I) Breit+QED, ^a Ref. 3	-29012	-5526	-463
Final	-27731	-5451	-461
Experiment ⁸⁵⁻⁸⁷	-27731(13)	-5446.0(7)	-466.4(4.6)

^aExtracted from Ref. 3: Breit: -93 MHz; QED: 159(23) MHz; Electron+Breit: -29113 MHz.

II. We predict the hyperfine structure constant for the RaF molecule without and with the finite nuclear magnetization distribution effect, using a universal B_s parameter and highly accurate CC methods [1]

TABLE III. Hyperfine structure constants $A_{||}$ and A_{\perp} (in MHz) for the ground $X^2\Sigma_{1/2}$ and excited $A^2\Pi_{1/2}$ states of the ^{225}RaF molecule induced by the ^{225}Ra nucleus.

Method	$X^2\Sigma_{1/2}$		$A^2\Pi_{1/2}$	
	$A_{ }$	A_{\perp}	$A_{ }$	A_{\perp}
$-A_{ /\perp}^{BW}$	730	720 ^a	44	26 ^a
Final	-17049	-16403	-2852	-2204

III. Observation of the nuclear magnetization distribution in a molecule: the first highly accurate measurement by the CRIS collaboration [2] in a molecule containing an unstable nucleus

	Theory [1], no BW, MHz	Theory [1], with BW, MHz	Experiment 2025 [2], MHz
$A_{ }(^{225}\text{RaF})$	-17780	-17049(170)	-17064(62)
$A_{\perp}(^{225}\text{RaF})$	-17123	-16403(164)	-16324(25)

CONCLUSION

- ✓ Molecules can be used to probe the distribution of nuclear magnetization.
- ✓ The excellent agreement between theory and experiment validates the molecular parameter values characterizing T,P-odd violation effects (E_{eff} , W_s , $W_{T,P}$, W_A), which will be used in a future RaF experiment to probe New physics beyond the Standard model.

REFERENCES

[1] L.V. Skripnikov, J. Chem. Phys. **153**, 114114 (2020)

[2] S.G. Wilkins et al, Science, **390**, 386 (2025)