

In March 2023, astrophysicists detected a gamma ray burst associated with what could be a merger of compact objects followed by a transient afterglow. After analyzing the spectra, they found some similarity with the AT2017gfo kilonova spectra suggesting the presence of such phenomena. The particularity with this kilonova event is that the spectrum has been recorded at late time after the merger [1]. At these times, the kilonova is said to be in his nebular phase. Conditions are such that the temperature is really low and the ionization stage does not exceed the doubly charged species. Only low-lying levels, such as metastable levels, are populated giving rise to so-called emission forbidden lines, such as the magnetic dipole (M1) and electric quadrupole (E2) transitions. Element identification in nebular phase spectra is quite challenging since atomic data and especially forbidden line lists for heavy elements are scarce in the literature. In this work, atomic calculations of M1 and E2 transition probabilities between low-lying levels in doubly ionized lanthanides were performed using the fully-relativistic Multi-Configurational-Dirac-Hartree-Fock (MCDHF) and Pseudo-relativistic Hartree-Fock (HFR) method.

AT2023vfi kilonova

- Second spectroscopic observation of a kilonova
- Observation of emission peaks around 2.1 μm and 4.4 μm
 - Possible presence of forbidden transitions from heavy r-process elements in the kilonova spectra at late time epoch

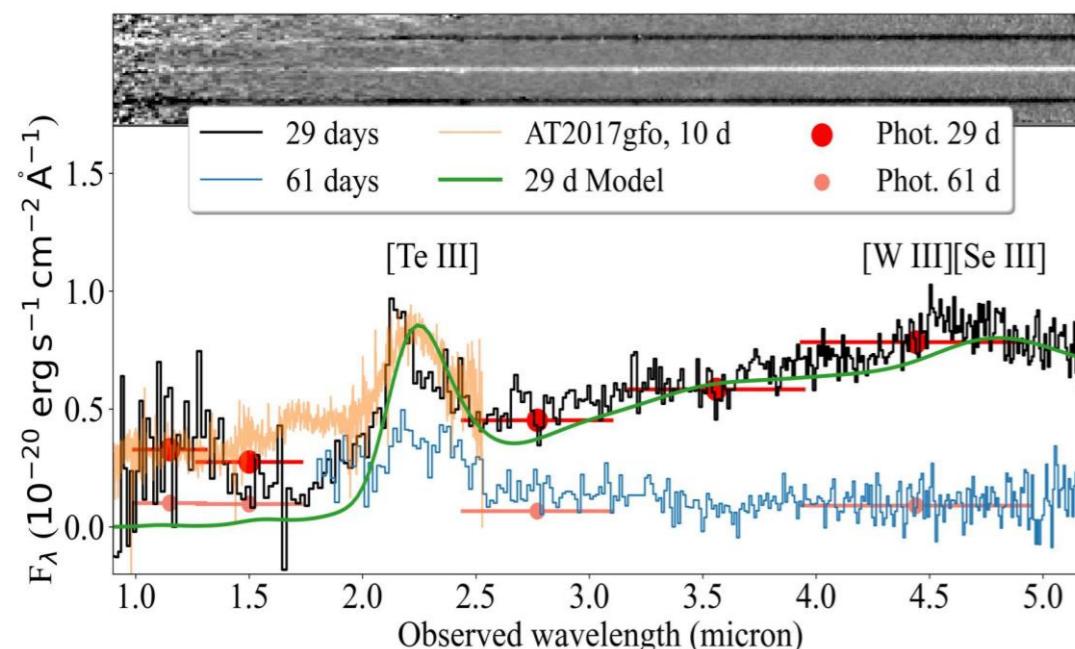


Fig 1 JWST/NIRSpec spectra of the AT2023vfi kilonova at 29 and 61 days after the event [1]

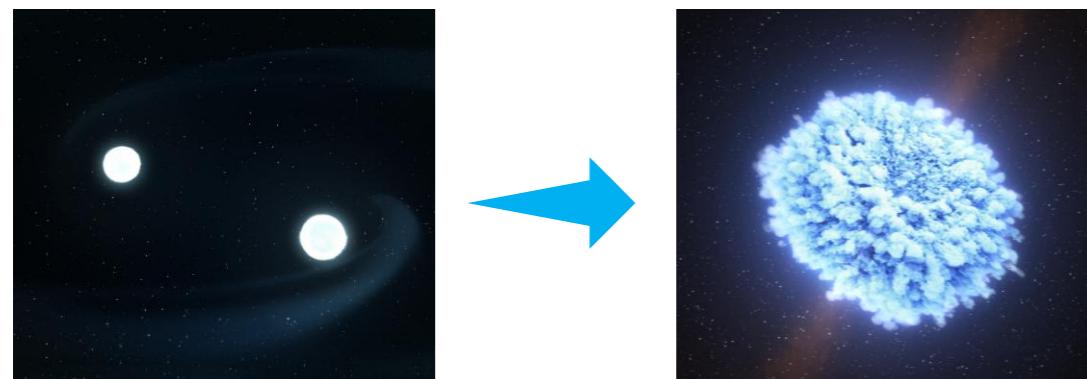


Fig 2 Artistic view of a compact object merger followed by a transient afterglow called kilonova (www.svs.gsfc.nasa.gov/12740)

Theoretical methods

Multiconfiguration Dirac-Hartree-Fock

- Based on the Dirac-Coulomb equation [2]
- Multiconfiguration approach
- QED corrections + Breit transverse interaction correction
- GRASP package [3]

Pseudo-relativistic Hartree-Fock

- Based on the Schrödinger equation [4]
- Multiconfiguration approach
- One-body relativistic corrections (spin-orbit, mass-velocity, Darwin)
- Semi-empirical calculation with adjustment of radial parameters

[1] A. Levan, *et al.*, Nature 626, 737-741 (2024).

[2] I. P. Grant, Relativistic quantum theory of atoms and molecules: theory and computation, New York: Springer (2007).

[3] C. Froese Fischer, *et al.*, Comput. Phys. Commun. 237, 184 (2019).

[4] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley : California University Press (1981).

[5] A. Kramida, *et al.*, NIST Atomic Spectra Database, <https://physics.nist.gov/asd> (2024).

[6] M. Ding, *et al.*, A&A 684, A149 (2024).

[7] J.-F. Wyart, *et al.*, Physica Scripta 56(5), 446 (1997).

[8] N. Spector, *et al.*, J. Opt. Soc. Am. B 14, 511 (1997).

M1 and E2 transition probabilities

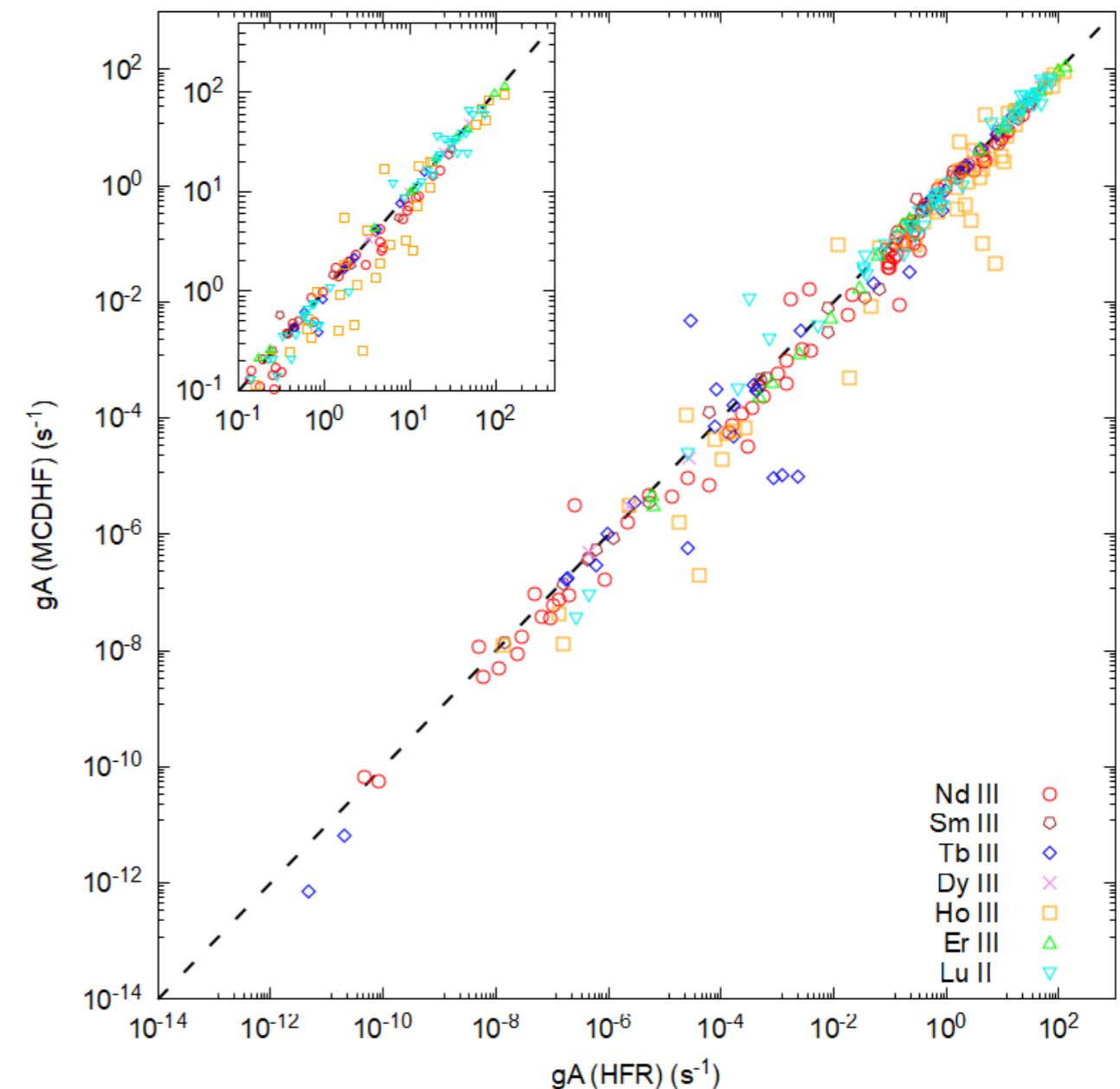


Fig 3 Transition probabilities comparison between HFR and MCDHF for Nd-Sm-Tb-Dy-Ho-Er III and Lu II

Astrophysical applications

- 482 lines with experimentally known levels [5-8]

Species	Transition Type	Lower level		Upper Level		λ_{exp} (Å)	gA_{HFR} (s ⁻¹)		
		Conf.	Term	E (cm ⁻¹)	Conf.	Term			
Sm III	M1	4f ⁶	7F ₂	814	4f ⁶	5D ₁	15870	6641	1.87E+01
Nd III	M1	4f ⁴	5I ₅	1138	4f ⁴	3K ₆	14064	7736	9.20E+00
Ho III	M1	4f ¹¹	4I _{11/2} °	8645	4f ¹¹	*9g _{9/2} °	21534	7758	5.88E+01
Nd III	M1	4f ⁴	5I ₆	2388	4f ⁴	3K ₇	15154	7833	1.27E+01
Ho III	M1	4f ¹¹	4I _{13/2} °	5439	4f ¹¹	2H _{211/2} °	16891	8732	1.26E+02
Nd III	M1	4f ⁴	5I ₇	3715	4f ⁴	3K ₇	15154	8742	1.19E+01
Er III	M1	4f ¹²	3H ₅	6970	4f ¹²	1G ₄	18384	8761	1.30E+02
Nd III	M1	4f ⁴	5I ₈	5093	4f ⁴	3K ₈	16459	8798	2.26E+01
Pr III	M1	4f ³	4I _{11/2} °	1398	4f ³	2H _{211/2} °	12495	9012	2.36E+00
Pr III	M1	4f ³	4I _{9/2} °	0	4f ³	2H _{29/2} °	10033	9967	5.71E+00
Pr III	M1	4f ³	4I _{13/2} °	2893	4f ³	2H _{211/2} °	12495	10415	5.51E+00
Pr III	M1	4f ³	4I _{11/2} °	1398	4f ³	2H _{29/2} °	10033	11581	3.71E+00
Ho III	M1	4f ¹¹	4F _{9/2} °	13329	4f ¹¹	*9g _{9/2} °	21534	12189	6.87E+01
Er III	M1	4f ¹²	3H ₄	10786	4f ¹²	1H ₄	18384	13161	3.43E+01
Er III	M1	4f ¹²	3F ₄	5082	4f ¹²	3F ₃	12473	13530	4.63E+01
Er III	M1	4f ¹²	3H ₆	0	4f ¹²	3H ₅	6970	14348	9.89E+01
Er III	M1	4f ¹²	3F ₄	5081	4f ¹²	3H ₄	10785	17532	2.01E+01
Lu II	M1	5d6s	3D ₁	11796	5d6s	1D ₂	17333	18062	1.17E+00
Ho III	M1	4f ¹¹	4I _{15/2} °	0	4f ¹¹	4I _{13/2} °	5439	18387	8.25E+01
Lu II	M1	5d6s	3D ₂	12435	5d6s	1D ₂	17333	20419	1.38E-01
Nd III	M1	4f ⁴	5F ₂	10774	4f ⁴	5G ₃	15350	21855	3.18E-01
Ho III	M1	4f ¹¹	4F _{9/2} °	13329	4f ¹¹	4F _{17/2} °	17868	22031	1.72E+01
Dy III	M1	4f ¹⁰	5I ₈	0	4f ¹⁰	5I ₇	4161	24031	4.83E+01
Tb III	M1	4f ⁹	6H _{13/2}	2805	4f ⁹	6I _{11/2}	6470	27282	8.62E-01
Ho III	M1	4f ¹¹	4I _{13/2} °	5439	4f ¹¹	4I _{11/2} °	8645	31191	1.89E+01
Dy III	M1	4f ¹⁰	5I ₇	4161	4f ¹⁰	5I ₆	7103	33992	2.47E+01
Tb III	M1	4f ⁹	6H _{15/2}	0	4f ⁹	6H _{13/2}	2805	35655	1.48E+01
Pr III	M1	4f ³	2H _{29/2} °	10033	4f ³	2H _{211/2} °	12495	40622	1.63E+00
Sm III	M1	4f ⁶	5D ₂	17814	4f ⁶	5D ₃	20110	43563	3.93E+00
Dy III	M1	4f ¹⁰	5I ₆	7103	4f ¹⁰	5I ₅	9285	45828	9.85E+00
Tb III	M1	4f ⁹	6H _{13/2}	2805	4f ⁹	6H _{11/2}	4734	51817	7.71E+00

Table 1 Most intense forbidden transitions in the observation range of the NIRSpec onboard the JWST

- Strong forbidden transitions and possible candidates :
 - 3 [Ho III], 1 [Nd III] and 1 [Lu II] around 2.1 μm
 - 1 [Dy III] and 1 [Sm III] around 4.4 μm