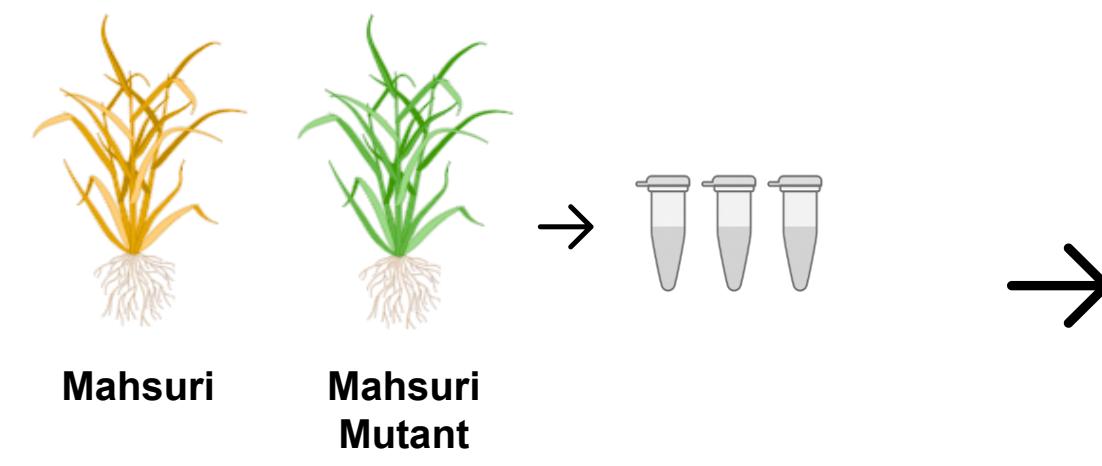


Whole Genome Analysis of Mahsuri Rice and Its Blast-Resistant Mutant for Understanding Resistance Mechanisms

Ainin Sofiya Kamaruzzaman¹, Nor'Aishah Hasan^{1*}, Amirul Adli Abd Aziz¹, Wan Dalila Wan Chik²

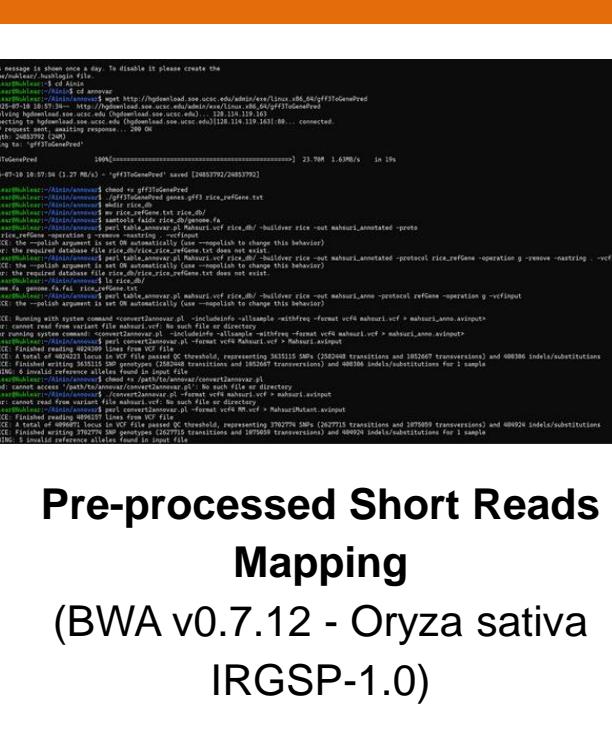

¹Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah, Kuala Pilah 72000, Negeri Sembilan, MALAYSIA.

²Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor, MALAYSIA.

INTRODUCTION & AIM

Rice (*Oryza sativa* L.) is a staple food for over 40% of the global population, especially in Asia. The traditional high-yielding cultivar 'Mahsuri', developed by the Food and Agriculture Organization (FAO) through japonica-indica hybridization, is susceptible to blast disease. Blast disease can affect all above ground parts of the rice plants, with initial symptoms white to grey-green lesions with brown borders. To address this, the 'Mahsuri Mutant' was created via mutational breeding to enhance blast resistance while retaining desirable traits. However, the specific molecular mechanisms and genetic mutations driving this resistance remain unexplored as the lack of molecular markers found that associated with specific SNPs in mutant line. Therefore, this study aims to conduct a genomic profiling of the susceptible 'Mahsuri' and its blast-resistance mutant line against a high-quality reference genome to identify genetic variants underlying blast resistance. By developing these genomic tools, these research aims to accelerate the development of improved rice cultivars which directly contributing to achieving several United Nations Sustainable Development Goals (SDGs) by 2030.

METHODOLOGY


Sample Preparation and DNA Extraction

- Mahsuri seeds from Malaysian Agricultural Research and Development Institute (MARDI).
- Mahsuri Mutant seeds from Malaysian Nuclear Agency.
- Extract two weeks old of young leaves using QIAGEN DNAeasy Plant Extraction Kit.

Whole-Genome Resequencing

- Illumina Novaseq 6000 with a depth 30x coverage, 150 bp paired end.
- Data NCBI: SRR24388814 (Mahsuri) and SRR22952097 (Mahsuri Mutant).

Bioinformatics Analysis

CONCLUSION

The whole-genome sequencing of 'Mahsuri' and its blast-resistant mutant, were successfully sequenced to the *Oryza sativa* Japonica reference genome. By identifying genome-wide Single Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (InDels), this study highlight the key genetic variants potentially linked to important agronomic traits, including disease resistance. These findings have resulted in findings the specific molecular markers to Mahsuri and Mahsuri Mutant, and will provide valuable insights for Malaysian rice varieties. In the future, functional validation will be emphasized to validate the particular functions of discovered blast resistance (R) genes using targeted gene expression analysis and transgenic research, providing a foundation for developing climate-resilient rice cultivars that support global food security goals.

REFERENCES

- Abdelhameed, A. A., Ali, M., Darwish, D. B. E., AlShaqha, M. A., Selim, D. A.-F. H., Nagah, A., & Zayed, M. (2024). Induced genetic diversity through mutagenesis in wheat gene pool and significant use of SCoT markers to underpin key agronomic traits. *BMC Plant Biology*, 24, 673. <https://doi.org/10.1186/s12870-024-05345-5>
- Bohy, D., Ramos, H. C. C., dos Santos, P. H. D., Boechat, M. S. B., Arêdes, F. A. S., Pirovani, A. A. V., & Pereira, M. G. (2021). Discovery of SNPs and InDels in papaya genotypes and its potential for marker assisted selection of fruit quality traits. *Scientific Reports*, 11(1), 292. <https://doi.org/10.1038/s41598-020-79401-z>
- Kamarudin, S. A. A., Ahmad, F., Hasan, N., Hisham, S. N., Yusof, S. N., Abu Hassan, A., Hussein, S., Harun, A. R., Wan Chik, W. D., Md Saad, M., Faizal Azizi, M. M., & Abd Aziz, H. S. (2024). Whole genome resequencing data and grain quality traits of the rice cultivar Mahsuri and its blast disease resistant mutant line, Mahsuri Mutant. *Data in Brief*, 52, 109974. <https://doi.org/10.1016/j.dib.2023.109974>

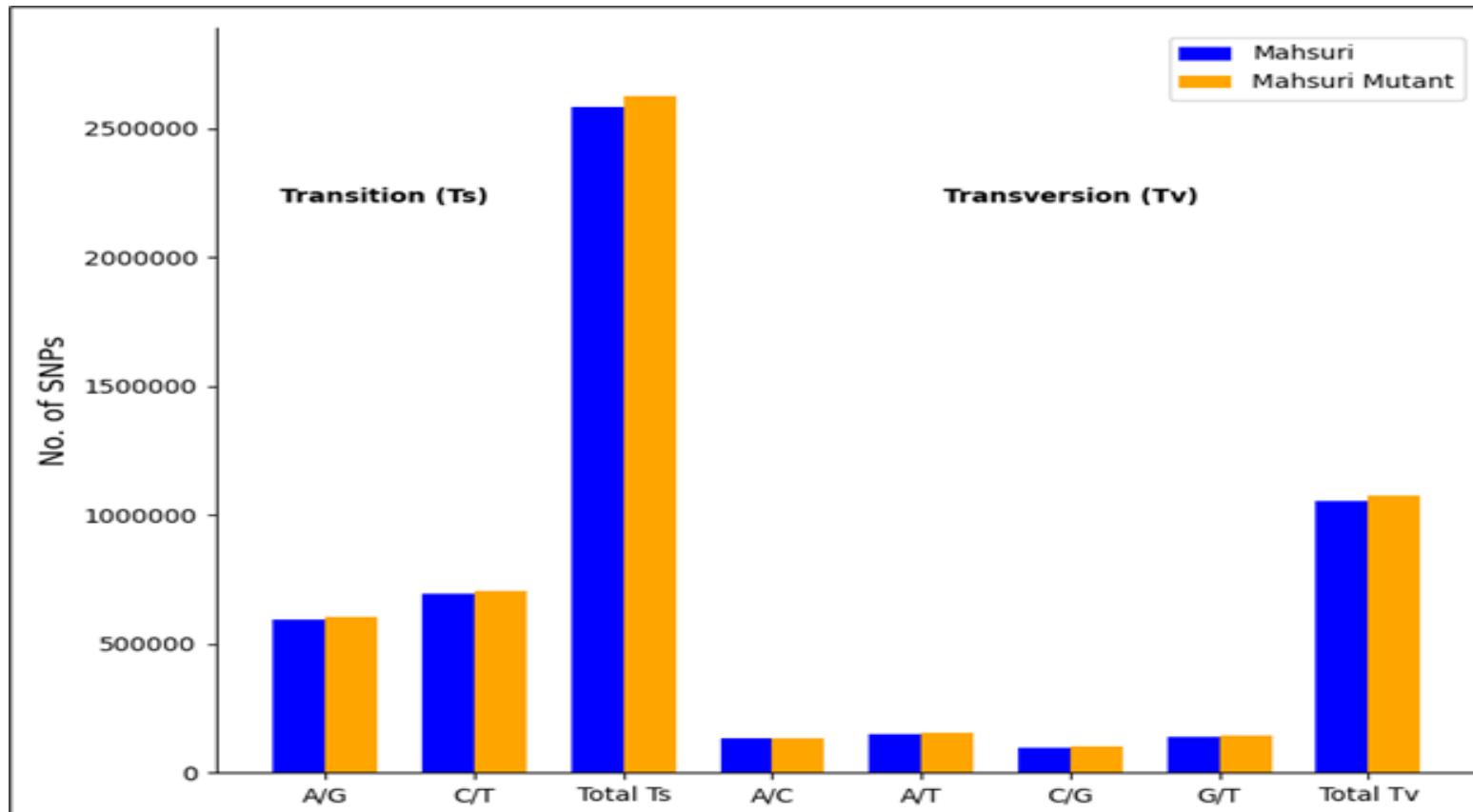

RESULTS & DISCUSSION

Table 1 Mapping statistics data of short reads from Mahsuri and Mahsuri Mutant rice variety.

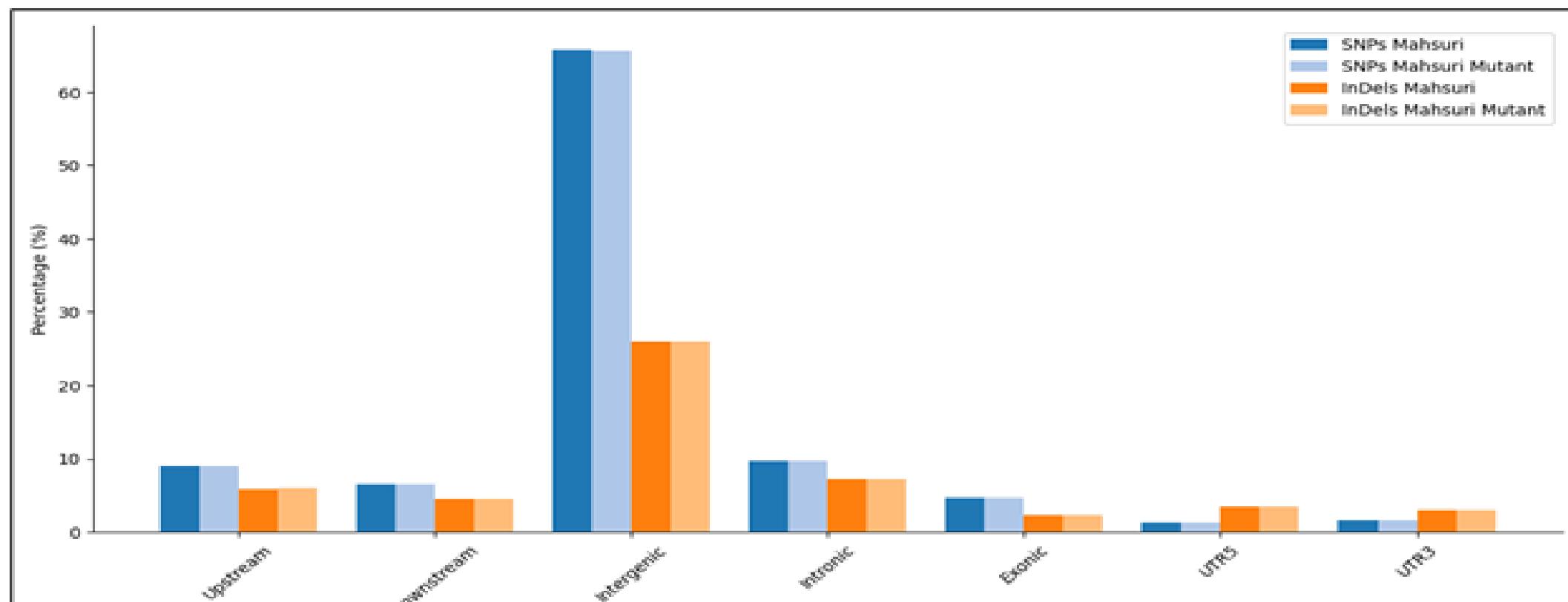

Variant	Mahsuri	Mahsuri Mutant
Total reads	55,510,645	60,907,677
Mapped reads	54,976,618 (99.04%)	60,365,342 (99.11%)
Properly paired	51,784,952	57,173,975
Singleton	534,027 (0.96%)	542,335 (0.89%)
Sequencing coverage	21.76	23.91

Table 2 Number of SNPs and InDels identified in Mahsuri and Mahsuri Mutant rice varieties.

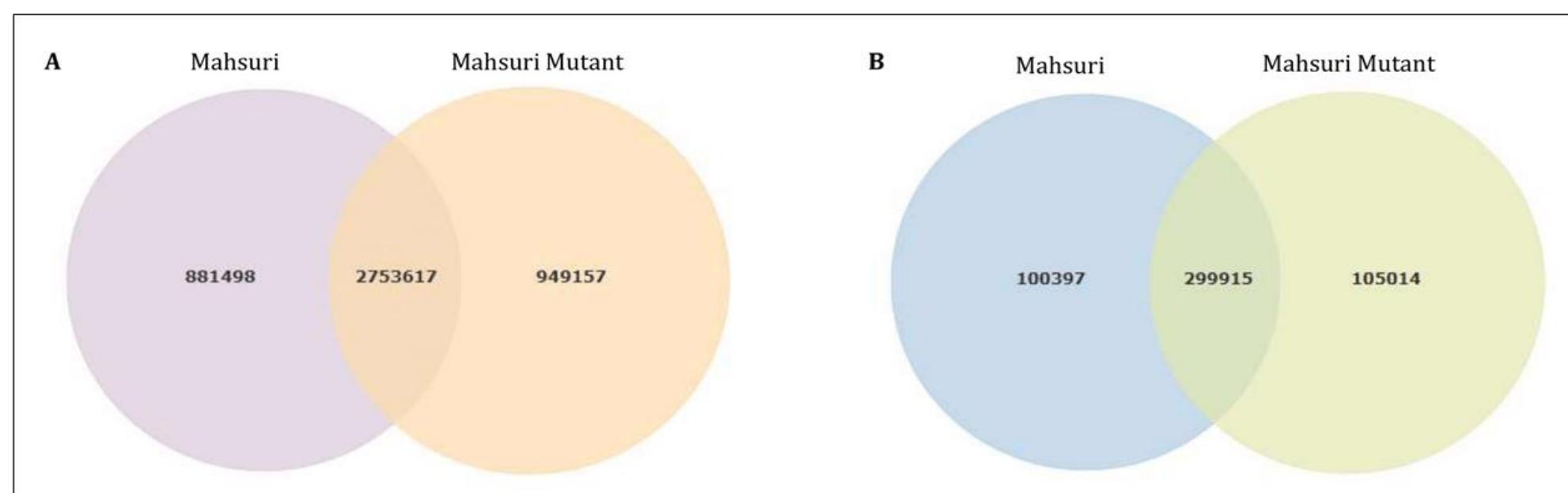

Variant	Mahsuri	Mahsuri Mutant
SNPs	3,629,220	3,696,685
InDels	395,003	399,386
Total	4,024,223	4,096,071

Figure 1 Transition (Ts) and transversion (Tv) substitutions in SNPs in Mahsuri and Mahsuri Mutant rice varieties.

Figure 2 Distribution of SNPs and InDels in different genomic regions for Mahsuri and Mahsuri Mutant rice variety.

Figure 3 Number of shared and unique SNPs (A) and InDels (B) among Mahsuri and Mahsuri Mutant rice variety.

- The increased SNPs frequency suggested that 'Mahsuri Mutant' received new point mutations during mutagenesis, which may alter or disrupt the existing genes' functions (Abdelhameed et al., 2024).
- The 'Mahsuri Mutant' showed a higher count of unique SNPs (949,157) and InDels (105,014), are strong candidates for the genetic basis of improved traits (Bohy et al., 2021).

Table 3 Summary of the identified blast resistance gene and its location in Mahsuri Mutant.

Gene ID	Gene Name	Chromosome	Gene Length	Location Number
Os01g0149500	<i>Pyricularia oryzae resistance T</i>	1	4,937	2,681,220 – 2,686,364
Os01g0781200	<i>Pyricularia oryzae resistance 64</i>	1	4,411	33,098,082 – 33,103,904
Os01g0782100	<i>Pyricularia oryzae resistance SH</i>	1	4,636	33,136,846 – 33,136,846
Os04g0401000	<i>Pyricularia oryzae resistance 21</i>	4	1,183	19,835,206 – 19,836,892
Os06g0286700	<i>Pyricularia oryzae resistance Z</i>	6	2,673	10,387,793 – 10,390,465
Os11g0689100	<i>Pyricularia oryzae resistance KM</i>	11	3,777	27,984,697 – 27,989,128
Os12g0281300	<i>Pyricularia oryzae resistance TA</i>	12	4,094	10,606,359 – 10,611,917

Unique SNPs within these loci can be used as molecular markers for Marker-Assisted Selection (MAS).