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This study aims to develop a multi-tissue epigenetic clock
using an interpretable convolutional neural network
trained on methylation maps that spatially organize CpG
sites by their genomic positions. The model seeks to
improve age prediction accuracy and to identify genomic
regions associated with aging-related epigenetic changes.
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Experimental Design: Proton irradiation of fibroblast cells
which have been exposed to microgravity underground.

Observe the impact on epigenetic changes associated with
aging in space travels. To this end, space conditions will be
simulated in the Canfranc Underground Laboratory:
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Computational Design: Build an epigenetic
clock to capture this changes (developing the
model).

DNA methylation patterns have emerged as valuable
epigenetic biomarkers, modeling aging-related molecular
changes through so-called epigenetic clocks. These clocks
have traditionally relied on linear regression models, for
both feature selection and age prediction [1, 2, 3]. However,
linear models have limited ability to capture nonlinear
interactions and spatial dependencies between CpG sites.
For this reason, recent approaches have turned to deep
learning methods, which are better suited to modeling
complex relationships [4, 5, 6].
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The developed epigenetic clock shows high performance in
an independent test set, with an R2 = 0.853 and an RMSE of
6.74 years. These results indicate good generalization
capability of the model and support its robustness in reliably
capturing the epigenetic signal associated with aging.
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