

Toward Sustainable Kiwi Cultivation: Growth and Metabolic Insights from a Case Study of the Application of Amino Acid and Organic-Based Biostimulants

Vasileios Papantzikos

Department of Agriculture, University of Ioannina, Arta Campus, 47100, Greece

INTRODUCTION

Kiwi is an economically important cultivar for Greece, as the country has been ranked fourth in kiwi exports worldwide in 2020 [1]. However, climate change has posed significant challenges to kiwi cultivation, as water requirements are much higher, and intense drought periods can cause abiotic stresses, which usually lead to reduced growth [2,3]. The use of humic and fulvic acid (HF), and glycine-betaine-proline (GBP) biostimulants could be an alternative to limit the harsh abiotic stress conditions, as it has been observed in several works [4]. This study aims to investigate the effect of an HF and a GBP biostimulant on *Actinidia deliciosa* var. "Hayward" growth by evaluating some metabolic and physiological properties.

METHODS

Two biostimulant treatments and a control (C) (where no biostimulant was applied) were arranged; i) GBP treatment (Application of a glycine-betaine 80%, proline 10%, antioxidants, bioflavonoids and ellagic acid 0.5% w/w biostimulant); Fitomaa (Futureco Bioscience), and ii) HF treatment (Application of a humic & fulvic acid-based (>25% w/w) biostimulant); Blackjack Bio (Sofbey). The total chlorophyll content (TCHL), total phenolic content (TPC), Proline, and leaf area were recorded.

RESULTS & DISCUSSION

Leaf area (Picture 1) was higher in the GBP treatment ($3943.17 \pm 211.26 \text{ cm}^2$), with a statistically significant difference compared to the control ($3484.01 \pm 354.19 \text{ cm}^2$) and HF ($3943.17 \pm 211.26 \text{ cm}^2$) (Figure 1i). Exogenous proline application has been observed to improve leaf area, as well as to increase leaf water content [5]. The results of this experiment are in agreement with other studies in which a positive effect of GBP substances on the increase in leaf number [6] and leaf area [7,8] has been observed. The overall picture of TPC in kiwi leaves did not show great variations.

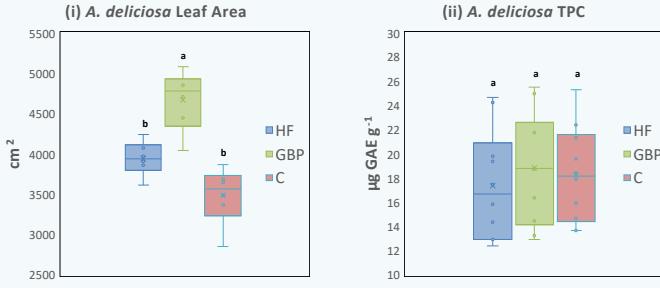


Figure 1. Variation of leaf area ($\text{cm}^2 \pm \text{SD}$) (i), and total phenolic content ($\text{mg GAE g}^{-1} \pm \text{SD}$) (ii) of *A. deliciosa* leaves. Different letters between treatments indicate significant differences according to the Bonferroni test ($p \leq 0.05$).

CONCLUSIONS

The addition of biostimulants promises a certain recovery of plant metabolism in stress conditions. In this experiment, this recovery was observed by the increase of leaf area and proline levels in the GBP treatment, presenting statistically significant differences for two consecutive years in kiwifruit.

Picture 1. Representative photographs of *A. deliciosa* var. "Hayward" leaf area of the treatments: i) C, ii) GBP, iii) HPA. The leaf area was analyzed at the end of each experimental season with the Image J software.

There was no statistically significant difference between the treatments, except for some samplings, mainly in the first experimental season. Although the TCP was increased in the GBP treatment (18.86 ± 4.61 mg GAE g $^{-1}$) (Figure 1ii). In other studies, a continuous statistically significant difference in TCP is observed in the treatments that applied GBP [9,10], which in this experiment was not observed for both consecutive years.

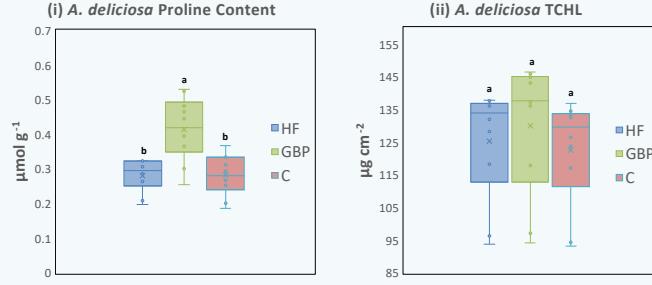


Figure 2. Variation of proline content ($\mu\text{mol g}^{-1} \pm \text{SD}$) (I), and total chlorophyll content ($\mu\text{g cm}^{-2} \pm \text{SD}$) (II) of *A. deliciosa* leaves. Different letters between treatments indicate significant differences according to the Bonferroni test ($p \leq 0.05$).

Higher values of proline, were observed for both consecutive years in the GBP treatment ($0.41 \pm 0.09 \mu\text{mol g}^{-1}$), with a statistically significant difference from both the C ($0.28 \pm 0.06 \mu\text{mol g}^{-1}$) and the HF ($0.28 \pm 0.05 \mu\text{mol g}^{-1}$) (Figure 2i). These results are in agreement with the work of Delfani et al. 2023, where the exogenous addition of GBP substances significantly increased proline levels in orange trees [11]. The restoration of osmotic dysfunctions can be achieved by the addition of GBP agents, a fact that has been observed in other works [12, 13]. Several studies confirm that TCHL enhancement in plant tissues occurs after the addition of GBP biostimulants [14, 15, 16]. However, in this experiment, no statistically higher TCHL was observed in the GBP treatment for two consecutive seasons (Figure 2ii). Although the higher THCL was noted in GBP treatment ($130.12 \pm 19.97 \mu\text{g cm}^{-2}$), this is relevant in other studies as well [17, 18]. Gernard et al. 1991 mention the protective role of Glycine-betaine for chloroplasts from oxidative stress and may act like cytokinin to enhance TCHL [19].

RESOURCES

1. Sharma, K.; Kumar, S. A Critical Appraisal of Pesticide Safety: Case Discussion and Sustainable Business Solutions—A Case Study on Kfar El-Ba'as, Hama Governorate. *Environ. Monit. Assess.* **2014**, *188*, 13330. <https://doi.org/10.1007/s10661-014-3918-6>

2. Datta, K. *Effect of Chemical Pesticides on Crop Productivity and Pesticide Resistance*; Academic Press: London, UK, 2010. <https://doi.org/10.1016/B978-0123743507.00028-6>

3. Eshel, E.; Trebesh, A.; Denner, N.; Meek, J.; Bouchard, P.; Rosen, P. A. Evaluation of High Salinity Tolerant and Heat Tolerant in *Kaleidos* during Summer via the Use of Alleviating Products as Active—Part I: Effects on Leaf Physiology and Yield. *Environ. Monit. Assess.* **2015**, *218*, 103. <https://doi.org/10.1007/s10661-015-4624-0>

4. Hossain, E.; Hossain, M. *Effect of Pesticide on Plant Growth and Yield of Different Crops*; Springer: Dordrecht, The Netherlands, 2010. <https://doi.org/10.1007/978-94-007-0200-0>

5. Seneviratne, M.; Abeysekara, S.; Gunapala, S. *Impact of Aqueous Application of Glycine Betaine on Sweet Cherry (Prunus Avium) Plants*; *Environ. Physiol. and Physiol. of Plants*; Springer: Dordrecht, The Netherlands, 2011. https://doi.org/10.1007/978-94-007-0200-0_14

6. Danner, K.; Hahn, G.; Goss, J.; Sauer, S.; Schmid, B. *Effect of Glycine Betaine on Maize Morphophysiology, Biochemical and Fruitlet Quality Traits of Tomato Under Ozone Change*; *Plant Growth Regul.* **2012**, *62*, 287–293. <https://doi.org/10.1007/s10648-012-9800-0>

7. Zhang, J.; Li, P.; Huang, J.; Tang, W. L.; Yu, Y.; Zhang, Y. Effect of Glycine Betaine on Cucumber Growth in Cold-Stored Peat Soil. *Plant Growth Regul.* **2016**, *80*, 101–106. <https://doi.org/10.1007/s10648-016-0410-0>

8. Seneviratne, M.; Abeysekara, S.; Gunapala, S. *Impact of Aqueous Application of Glycine Betaine on Sweet Cherry (Prunus Avium) Plants*; *Environ. Physiol. and Physiol. of Plants*; Springer: Dordrecht, The Netherlands, 2011. https://doi.org/10.1007/978-94-007-0200-0_14

9. Cho, L.-H.; Koh, C. *Effect of Glycinebetaine on Plant Water Use, and Photosynthetic Efficiency, and Growth of Rice Plants under Salt Stress*. *Terrestrial Journal of Agriculture and Natural Resources* **2015**, *20*, 421–426. <https://doi.org/10.1007/s40720-015-0062-7>

10. Bunting, B. D. *Effect of Glycinebetaine on Plant Growth and Yield*; Springer: Dordrecht, The Netherlands, 2012. <https://doi.org/10.1007/978-94-007-2142-0>

11. Danner, K.; Hahn, G.; Goss, J.; Sauer, S.; Schmid, B. *Effect of Glycine Betaine on Maize Morphophysiology, Biochemical and Fruitlet Quality Traits of Tomato Under Ozone Change*; *Plant Growth Regul.* **2012**, *62*, 287–293. <https://doi.org/10.1007/s10648-012-9800-0>

12. Seneviratne, M.; Abeysekara, S.; Gunapala, S. *Impact of Glycine Betaine on Sweet Cherry (Prunus Avium) Plants*; *Environ. Physiol. and Physiol. of Plants*; Springer: Dordrecht, The Netherlands, 2011. https://doi.org/10.1007/978-94-007-0200-0_14