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Abstract: Remote sensing has been widely used in vegetation-dynamics monitoring. Many 

studies have used data acquired by multispectral sensors, such as the Landsat TM sensor, due 

to their high spatial resolution (30 m). However, during the growing season, the temporal 

resolution (16 day) cannot capture rapid changes of vegetation. Meanwhile, coarse-spectral-

resolution sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have 

high-frequency temporal information that can catch the details of landscape changes. In this 

research, we proposed a data-fusion approach to merge the MODIS and Landsat TM data to 

create a dataset of vegetation dynamics with both a high spatial resolution and a fine 

temporal resolution. The Comanche and Faith Ranches, located in west Texas, were chosen 

for this study. The MODIS product was used as a regionally consistent reference dataset to 

correct the Landsat imagery. Based on this new dataset, NDVI time-series curves from 2004 

to 2011 were calculated with the MODIS 13 Vegetation Dataset. One random sample of red-

band images was tested and compared with MODIS data. A high correlation coefficient 

0.907 and RMSE 0.0245 was found. 
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1. Introduction 

Data fusion is the process of combining information from heterogeneous sources into a single 

composite picture of the relevant process, such that the composite picture is generally more accurate 

and complete than can be derived from a single source alone [1]. Spatial and temporal remote-sensing 

data fusion is a technique that can produce a dense time-series database with a high spatial resolution 

[2]. In this database, the temporal resolution is the same as the high-temporal-resolution data and the 

spatial resolution fits with the high-spatial-resolution database. With the aid of time-series data fusion, 

changes in land surface, such as vegetation dynamics, can be easily detected and monitored. Time 

series of Vegetation indexes (VIs), such as the Normalized Difference Vegetation Index (NDVI) and 

the Enhanced Vegetation Index (EVI), represent land-surface vegetation dynamics in both time and 

space [3]. These time series are generally derived from a multi-temporal, coarse-spatial-resolution data 

set. However, when the study area is small in scale, issues of vegetation-monitoring dynamics arise 

with the pixel size of the coarse imagery [4]. In this situation, if the study areas focus on medium- or 

low-vegetation analyses (such as grasses and shrubs); a database of analyses in high temporal and 

spectral resolution is critical. Coarse-spatial-resolution sensors (from 250 m to a few kilometers) such 

as MODIS, NOAA, SPOT VEGETATION, and MERIS commonly have relatively high temporal 

resolution (such as daily) [5]. On the contrary, the medium- and low-spatial-resolution sensors, such as 

Landsat TM, could detect most of the vegetation variations, but lack temporal resolution. In many 

cases, it is very hard to get a rapid response to vegetation dynamics [6]. 

Currently, the available satellite data set, which is limited by spatial and temporal characteristics, 

influences the accuracy of mapping land cover at a continental scale [7,8]. Corresponding with the 

Landsat TM sensor, MODIS has close solar geometries and orbital parameters. This would enable the 

fusion of Landsat TM and MODIS time-series data by subpixel in both time and space. A data-fusion 

approach can therefore be designed by combining the daily MODIS 250 m surface-reflectance product 

(MODIS09GQ) [9] with Landsat data in order to generate a modeled “daily” Landsat data set. The 

modeled data product can keep a fine spatial resolution (30 m) to capture the land cover in details, and 

can keep high temporal resolution (daily) to accurately determine changes over time [8]. 

In recent years, scholars around the world have developed advanced research and methods on time-

series data fusion [4,8,19,20]. Most methods are based on linear-mixed models and assume no changes 

in surface reflectance by pixel in the same category. Due to the influence of geologic environments, 

there are reflectance changes in surface features in space. Some scholars proposed improved 

algorithms based on the assumption that there are no dramatic changes in the neighborhood pixels 

[4,8,21]. The evaluation of the methods has been applied in many fields such as dry-land forest 

phenology [10] [11], and forest-cover changes [12–14].  

Landsat TM sensors, with a high spatial resolution of 30 m and a 16-day revisit cycle, are widely 

used for mapping a range of biophysical vegetation parameters and monitoring regional land cover 

[15]. In the past 30 years, Landsat data have been used to gather ecological information such as the 
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dynamics of ecosystems and the detection of changes in land cover [16], and as an efficient tool for 

monitoring vegetation-cover changes in tropical-forest domains [17]. However, the applications of 

Landsat data in monitoring biodynamic and surface changes are limited due to cloud contamination 

and a 16-day minimum TM-sensor revisit cycle. Cloud contamination can lower data quality and cause 

missing data. During data acquisition, clouds covering and lowering temporal resolution could be the 

major obstacle for monitoring changes in vegetation characteristics in the study area. NASA’s 

Moderate Resolution Imaging Spectroradiometer (MODIS) provides vital information and high-

quality-data resources for land cover research [18]. With a lower spatial resolution (250 m, 500 m and 

1,000 m), MODIS Terra/Aqua revisit the globe multiple times per day.  

The research strategy engaged herein focuses on linear-pixel decomposition [22]. We extracted the 

time curve of surface reflectance based on a high temporal-resolution data set. After combining it with 

the high-spatial-resolution data, we got a database with high resolutions in both time and space. In this 

study, two ranches (Faith Ranch and Comanche Ranch) in west Texas were chosen for the study areas. 

Images from the MODIS daily surface-reflectance product (MOD09GQ) and Landsat TM 5 from 

2004-2011 were chosen to build the new data set and evaluate the fusion results. The NDVI time-series 

data set was produced by the modeled-fusion result. This method is automated and greatly shortens 

computation time. 

2. Study Area 

The study areas are the Faith Ranch (28.613N; -100.092W) and Comanche Ranch (28.381N; -

100.009W) located in Dimmit County in west Texas. The dominant vegetation type is shrubs with 

grass, principle habitat for white-tailed deer. The most notable feature of the study area is the plain. 

Site records indicate the area of Faith and Comanche ranches are 5,028km2 and 4,855km2, 

respectively, with an annual inter variability of precipitation between 448.6 mm and 463.9 mm per 

year. Each ranch had 6 equal-area enclosures for experiments, which can be easily distinguished by 

Landsat TM data. The distance between the two ranches is 37 km; however, 250-m MODIS09 imagery 

resolution is not sufficient to detect changes in vegetation dynamics in these areas. 
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Figure 1.  Landsat 5 TM Satellite Maps and Location of Study Area, Comanche and Faith Ranches in 

Dimmit County, Texas 

 

3. Methodology 

3.1 Methods 

The data-fusion method in this study is designed to capture high-resolution spatial changes from 

Landsat TM 5 data, while the high temporal resolution of MODIS 09 imagery is used to accurately 

determine the occurrence time of a given disturbance. The inputs of this method are: 1) two adjacent 

Landsat TM 5 images (one at the beginning of the period and the other is at the end), and 2) MODIS 

surface-reflectance images at a given date in the measurement period. 

Cloud contamination tends to reduce reflectance in the near-infrared band and increase it in the red 

band, thus the ratio value of the vegetation indices fluctuates heavily. When the cloud cover is greater 

than 10%, the probability of acquiring good quality Landsat imagery can be as low as 10% regionally 

[23]. 

For each homogenous pixel at MODIS resampled data, the relationship of the surface reflectance 

measured by Landsat TM sensor can be represented as: 

 (1) 

where  is the Landsat and MODIS data acquisition date,  is the surface reflectance of the 

calibrated Landsat imagery at a given location . At the same pixel location,  is the 

previously geo-referenced and resampled MODIS surface reflectance. In the equation,  represents 

the conversion factor between the two sensors (caused by different solar-elevation angle and 

bandwidth settings). Here it is assumed that the MODIS surface reflectance has been geo-

referenced and resampled to the resolution and bounds of the Landsat surface reflectance image 

 and thus shares the same pixel size, coordinate system, and the image size.. From the 

geographical space, we suppose that in a comparatively short period of time (such as one day), changes 
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in surface reflectance are continuous, which means the land cover will not change radically in that 

short period of time. 

Similarly, at the data of , the relationship between Landsat and MODIS sensors surface 

reflectance can be expressed as: 

 (2) 

Supposing there are no changes in cover types or systematic errors from date  to , meaning  = . 

After combining equation (1) and (2), equation (3) can be written as: 

 

(3) 

Under ideal conditions, the surface reflectance of Landsat at date  at a given pixel  is: 

surface reflectance of Landsat at date  multiplied by the ratio of MODIS surface reflectance between 

date  and . However, the ideal modeled relationships between MODIS and Landsat surface 

reflectance do not fit the equation all the time. 

 

(4) 

In the equation, where the is the central pixel of the sliding window,  is the 

surface reflectance to be predicted on date ,  is the size of window (only valid pixels are used for 

prediction in the windows).  and  are the pixel values of MODIS data on the date  

and , respectively. The weight coefficient herein is introduced: the weight  determines the 

contributions from each neighbor pixel to the estimated reflectance of the central pixel. In the process 

of prediction, the problem can be resolved by introducing the sliding window concept to minimize the 

boundary influence. 

During central-pixel value calculation, the weight  depends on three main factors: 1) spectral 

difference, 2) time-information difference, and 3) space-relative distance. The weight can be expressed 

as: 

 

(5) 

where  is the value, which combines the predicted central pixel with the rest of the pixels in the 

sliding window, considering the three main factors (spectral difference, time-information difference, 

and space-relative distance). All images used in this study were clipped based on the region 

of interest (ROI) of the Comanche Ranch and Faith Ranch. Regions of interests (ROIs) of the two 

ranches were built to calculate the NDVI, respectively. 

3.2. Data Processing  

3.2.1 Landsat-5 TM Data Set 

Landsat 5 TM data were acquired from January 2004 to November 2011. All data sets have high 

data quality and are cloud-cover free. The Landsat TM sensor onboard the Landsat 5 platform has a 

spatial resolution of 30 m and a spatial extent of 185×185 km per scene, which is well suited for 

characterizing landscape-level forest structure and dynamics. Arguably, Landsat is the most commonly 
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used satellite sensor for mapping biophysical vegetation parameters and land cover [7]. Landsat 

images have advantageous spatial and spectral characteristics for describing vegetation properties; the 

temporal resolution for the Landsat TM 5 sensor is 16 days. 

The 30 m Landsat pixel is adequate for mapping major vegetation changes [24], but the integration 

of high-temporal-resolution data allowed for a more detailed characterization of the landscape. The 16-

day revisit cycle is often extended due to cloud contamination or duty cycle limitations [25]. Cloud 

cover is a major obstacle for monitoring short-term disturbances and changes in vegetation 

characteristics through time. Moreover, the probability of acquiring cloud-free Landsat imagery for a 

given year (cloud cover below 10%) can be as low as 10% [23]. In the cloudy area of the Earth, the 

problem is compounded, and researchers are fortunate to get two to three clear images per year. 

3.2.2 MODIS 09 Surface Reflectance Data Set 

Datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard 

NASA’s Terra and Aqua satellites are imaged daily at the global scale, providing the best possibility of 

cloud-free observations from the platform. Conversely, high-temporal-resolution sensors have a more 

frequent revisit rate and produce wide-area coverage with a lower spatial resolution [26]. The 

Terra/Aqua MODIS satellites provide frequent coarse-resolution images, revisiting the earth’s surface 

at least once per day. Bands 1-7 of MODIS images were designed primarily for remote sensing of land 

surface, including: blue band (459 to 479 nm), green band (545 to 565 nm), red band (620 to 670 nm), 

near infrared band (841 to 876 nm), and the mid-infrared band (1230 to 1250nm, 1628 to 1652nm, 

2105 to 2155 nm). The red and the near-infrared (NIR) bands were used to map NDVI in this project. 

To match the bandwidths with the Landsat TM sensor, a comparison of bandwidth between the 

Landsat TM sensor and the MODIS sensor is shown below: 

Table 1. Landsat TM and MODIS Bandwidth [8] 

Landsat TM Band TM Bandwidth (nm) MODIS Band MODIS Bandwidth (nm) 

1 450 - 520 3 459 - 479 

2 530 - 610 4 545 - 565 

3 630 - 690 1 620 - 670 

4 780 - 900 2 841 - 876 

5 1550 - 1750 6 1628 - 1652 

7 2090 - 2350 7 2105 - 2155 

Depending on the spectral characteristics of interest, MODIS dataset have spatial resolutions of 250 

m, 500 m, and 1000 m. However, at the same time, the coarse resolution of MODIS limits the sensor’s 

ability to quantify biophysical processes in heterogeneous landscapes.  

MODIS data were downloaded from the Earth Observing System Data Gateway distributed archive 

(http://reverb.echo.nasa.gov/reverb/). MODIS images were reprojected to the UTM 84 Datum and 

resized separately for the two ranches in the study area by an Arcmap shape file. The data set was 

composed of 2,703 daily 250 m surface-reflectance images (Product MOD09GQ-V005) acquired at the 

same time as the TM images, and 23 250 m, 16-day MODIS-NDVI composite images covering 

January 2004 to November 2011 (Product MOD13Q1-V004) [27]. All MODIS products were 
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automatically transformed to a GEO-TIFF format with a MODIS Reprojection Tool (MRT) and 

resampled to 30 m Landsat-imagery resolution by using the nearest-neighbor method. Red and NIR 

bands in the MODIS data were extracted, respectively. The data set included extensive quality control 

(QC) information to exclude cloud contamination and take care of data-processing conditions. 

4. Results 

In this section, we analyzed the algorithm performance over the two example ranches (Faith and 

Comanche ranches) in west Texas. The performance of the approach is evaluated by statistically 

comparing the experimental results (MODIS original data) with model estimates of time-series maps 

of the two ranches using the method in this study. Meanwhile, red and NIR bands were chosen to be 

modeled in this study for convenience of computer programming and for calculating NDVI (by the 

equation NDVI = (Red Band-NIR Band) / (Red Band+NIR Band)). As inputs, we used the red NIR 

bands from 30 m Landsat TM 5 data that were 90% cloud free, and 250 m MODIS 09 surface-

reflectance data, both red and NIR bands, from 2004 to November 2011. For final outputs, we got the 

data set with a spectral resolution of 30 m and the temporal resolution of once daily with both the red 

and NIR bands modeled. The composed data set has high quality in both red and NIR bands. Figure 2 

shows a random example of the fusion result of a period from Jan. 21, 2011 to Feb. 5, 2011. The input 

data are surface-reflectance red band of Landsat TM 5 from Jan. 21, 2011 and Feb. 5, 2011, and one 

MODIS red-band image from Jan. 21, 2011, which has the same data as the first Landsat data. The 

outputs of the processing are daily images with space resolution of 30 m during the test period from 

Jan. 21, 2011 to Feb. 5, 2011, respectively. 

IDL language programming was used to produce Landsat-MODIS time-series maps from 2004 to 

2011 of the Comanche and Faith ranches in Texas. These models are going to run automatically after 

obtaining the direction of the input data set. We tested the result-pixel images for the Comanche 

Ranch, the area of which is 4,855 km
2
, on the acquired date of Feb. 5, 2011. All images used in this 

study were clipped based on the region of interest (ROI) of the Comanche Ranch and Faith Ranch. 

ROIs were built based on shape files of the two ranches, respectively. The NDVI maps of the 

Comanche Ranch of a different model than mentioned here are shown in Figure 3.  
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Figure 2.  Prediction of surface reflectance (red band) from MODIS imagery and Landsat imagery 

 

Landsat 1/21/2011 

 

MODIS 1/21/2011 

 

Landsat 2/5/2011 

 

Predict Date: 1/22/2011 
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Figure 3. Combination of MODIS and Landsat TM images: (a)&(b) original low-resolution 

MODIS09 image in Band 1 of Faith and Comanche Ranch, respectively; (c)&(d) high- resolution 

Landsat TM image in red Band of Faith and Comanche Ranch, respectively; (e)&(f) reference high-

resolution Landsat TM image in Band 3 of Faith and Comanche Ranch; (g)&(h) Modeled image of 

Faith and Comanche Ranches after the fusion of MODIS and Landsat TM images. 
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The study method was run in IDL programming by bands. The red and near-infrared (NIR) bands 

were chosen for modeling to make a time-series dataset product. The process of combining MODIS 

and Landsat TM images for the Faith and Comanche ranches is illustrated in Figure 3. It shows that 

one of the low-resolution MODIS images (Jan. 21, 2011) and two high-resolution Landsat TM images 

(Jan. 21, 2011 and Feb. 5, 2011) were used to obtain a new of high-resolution, time-series data set. 

Because the correlation coefficients represent the degree of similarity between the original satellite 

image and the modeled image, we used the correlation coefficients to evaluate the modeled results of 

the database. 

In Figures 3 and 4, there is a slight difference that could be indistinct between the Landsat-band 

map and modeled-band map. Even after transmitting the modeled data to the NDVI map after 

calculating the combination of red and NIR bands, there are still great correlation coefficients; RMSE 

is 0.02453, and 55,876 points are calculated in total. Figure 4 shows a 2D scatter plot of the modeled 

fusion band 1 versus the high accuracy MODIS data at the date of Sep 12, 2011. The modeled data 

indicates a very high correlation with the high-quality MODIS data, with R
2 
=  0.907. 

Figure 4. Cross-validation plot for the Landsat Surface Reflectance Model. R
2
=0.907 

and RMSE = 0.02453 

 

The MODIS 13 NDVI map dataset was employed in this study, and the MODIS 13 vegetation 

products are available every 16 days with a spatial resolution of 250 m. Due to providing the best 

possibility for cloud-free observation because of its polar-orbiting platform, MODIS 13 vegetation 

products became the ideal reference standard for the fusion results. Based on the band-math method, 

we built up a new dataset by calculating the NDVI with modeled results from red and NIR bands. 

NDVI values of the modeled dataset were computed from red in NIR surface reflectance for each daily 

image. After the comparison with MODIS 13 data, we found there is still a high correlation between 

the new database and the high-quality MODIS 13 data. Figure 5 shows the comparison between 

MODIS 13 NDVI layer data and modeled band math NDVI data from 2004-2001 at the two ranches, 

respectively. 

 



 11 

 

 

Figure 5.  Comparison of MODIS 13 NDVI data and modeled NDVI data from the year of 2004-2001 

at the Faith and Comanche ranches  

 

5. Discussion 

Table 2 shows the comparison of the method in this study with STARFM and other multisensor-

fusion methods. The results indicate the method we developed in this study has an equivalent or higher 

correlation coefficient. The main characteristics are: 1) both before (t0) and later (tk) high-resolution 

images were used to produce the data-fusion data set with more texture information in details; 2) this 

new database has a high correlation with the high-temporal-resolution images (MODIS), and the high 

currency from the high-temporal database was kept in the new fusion database that we got in the study; 

3) the new database considerably reduced the running time of data-fusion processing, facilitating the 

establishment of a relatively long time-series data set, even 10 years or more; 4) the new database has 

good pixel fidelity, and the resolution of the data-fusion dataset is a measure of the fidelity of pattern 

transfer. When the study area focuses on a small area, such as the two ranches in this study, we still 

have great fitness in the zoom-in pixel maps. 

Table. 2 Comparison between currently different time series fusion methods 

Objective Sensors Correlation Coefficient RMSE Method 

NDVI MODIS and Landsat TM 0.78-0.89 0.07-0.105 Busetto 2008 

Reflectance MODIS and Landsat TM 0.91 0.02-0.06 Thomas 2009 

 

Meanwhile, fusion results are still influenced by the following factors: 1) systematic errors between 

different sensors. There are small biases in different sensor systems due to the differences in 

acquisition time, bandwidth ranges and data processing. 2) Linear-mixed modeling. The linear-mixed 
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model was adopted in the most of the multisensor time-series data-fusion methods. In this model, the 

linear-mixed model is perfect for the bare earth, or snow cover. However, when the land surface is 

covered with low vegetation or even forest, the sensors just get part of the reflection. The other part of 

the reflection is disturbance from the land-cover object. Therefore, the phenomena of nonlinear 

mixture are widespread. 

In addition, the surface reflectance of invariant targets should remain relatively consistent over 

time. Atmospheric noise makes a huge contribution to variable reflectance errors over time. The 

dataset was preprocessed with the atmospheric correction because the atmospheric correction is able to 

minimize variance. There was no additional correction applied to the data to correct the view angle and 

reduce atmospheric and terrain effects. 

6. Conclusions  

By using a new fusion technology of spatial-temporal, remote-sensing data combining Landsat TM 

imageries with temporal MODIS surface-reflectance products, we produced a product that could have 

considerable utility for applications that require both high spatial resolution and frequent coverage 

(high temporal resolution). The modeled results were used to evaluate the vegetation dynamics of the 

Faith and Comanche ranches in west Texas. We confirmed the precision of the algorithm in this study 

through pixel-correlation analysis between high accuracy MODIS imagery and the modeled-fusion 

imagery. 

High temporal and spectral resolution with a high accuracy time-series “Landsat” data set is 

achieved in this method; the correlation coefficient is higher than 0.9. The high correlation between the 

original data and the modeled data makes a great contribution to the assumption that we made about 

the time-series changes in a relatively short time. We also used the band math to get a new NDVI 

dataset based on the fusion result, and found that there is still a high correlation between MODIS 13 

data and the modeled data. 

In contrast to traditional multisensor-fusion methods, this method can be used to monitor vegetation 

dynamics without the land-cover maps and in-situ measurements. Due to the high temporal MODIS 

data, dataset temporal resolution can be greatly increased (at least one modeled data set per day in this 

study) so it is much easier to detect variances in vegetation dynamics. 

Acknowledgments 

Special thanks are given to Drs. David Hewitt and Timothy Fulbright for sharing the ideas of 

inspiration to study the vegetation dynamics over the ranches.  

Author Contributions 

Di Yang proposed and developed the research design, manuscript writing and results interpretation. 

Hongbo Su supervised all the work that has been done by the first author and revised the manuscript 

extensively. Yan Yong and Jinyan Zhan revised the manuscript. 

Conflict of Interest 

The authors declare no conflict of interest.  



 13 

 

 

References and Notes 

1. David David Lee Hall.; Sonya Anne Hall McMullen. Fusion Applications. In Mathematical                          

Techniques in Multisensor Data Fusion, 2nd Ed; Publisher: Artech Print on Demand, USA, 2004; 

pp. 3-13. 

2. Wu, M. Spatial and Temporal Fusion of Remote Sensing Data Using Wavelet Transform. 2011 

International Conference on Remote Sensing, Environment and Transportation Engineering 2011, 

1581–1584. 

3. Yang, P.; Shibasaki, R.; Wu, W.; Zhou, Q.; Chen, Z. Evaluation of MODIS Land Cover and LAI 

Products in Cropland of North China Plain Using In Situ Measurements and Landsat TM Images. 

2007, 45, 3087–3097. 

4. Busetto, L.; Meroni, M.; Colombo, R. Combining Medium and Coarse Spatial Resolution Satellite 

Data to Improve the Estimation of Sub-pixel NDVI Time Series. Remote Sensing of Environment 

2008, 112, 118–131. 

5. Hwang, T.; Song, C.; Bolstad, P. V.; Band, L. E. Downscaling Real-time Vegetation Dynamics by 

Fusing Multi-temporal MODIS and Landsat NDVI in Topographically Complex Terrain. Remote 

Sensing of Environment 2011, 115, 2499–2512. 

6. Viña, A.; Bearer, S.; Zhang, H.; Ouyang, Z.; Liu, J. Evaluating MODIS Data for Mapping Wildlife 

Habitat Distribution. Remote Sensing of Environment 2008, 112, 2160–2169. 

7. Liu, W.; Wu, E. Y. Comparison of Non-linear Mixture Models: Sub-pixel Classification. Remote 

Sensing of Environment 2005, 94, 145–154. 

8. Masek, J.; Schwaller, M.; Hall, F. On the Blending of the Landsat and MODIS Surface 

Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Transactions on Geoscience and 

Remote Sensing 2006, 44, 2207–2218. 

9. Justice, C. .; Townshend, J. R. .; Vermote, E. .; Masuoka, E.; Wolfe, R. .; Saleous, N.; Roy, D. .; 

Morisette, J. . An Overview of MODIS Land Data Processing and Product Status. Remote Sensing 

of Environment 2002, 83, 3–15. 

10. Walker, J. J.; Beurs, K. M. de; Wynne, R. H.; Gao, F. Evaluation of Landsat and MODIS Data 

Fusion Products for Analysis of Dryland Forest Phenology. Remote Sensing of Environment 2012, 

117, 381–393. 

11. Martinuzzi, S.; Gould, W. a; Ramos Gonzalez, O. M.; Martinez Robles, A.; Calle Maldonado, P.; 

Pérez-Buitrago, N.; Fumero Caban, J. J. Mapping Tropical Dry Forest Habitats Integrating Landsat 

NDVI, Ikonos Imagery, and Topographic Information in the Caribbean Island of Mona. Revista de 

biología tropical 2008, 56, 625–39. 

12. Hansen, M. C.; Roy, D. P.; Lindquist, E.; Adusei, B.; Justice, C. O.; Altstatt, A. A Method for 

Integrating MODIS and Landsat Data for Systematic Monitoring of Forest Cover and Change in 

the Congo Basin. Remote Sensing of Environment 2008, 112, 2495–2513. 

13. Potapov, P.; Hansen, M. C.; Stehman, S. V.; Loveland, T. R.; Pittman, K. Combining MODIS and 

Landsat Imagery to Estimate and Map Boreal Forest Cover Loss. Remote Sensing of Environment 

2008, 112, 3708–3719. 

14. Martinuzzi, S.; Gould, W. a; Ramos Gonzalez, O. M.; Martinez Robles, A.; Calle Maldonado, P.; 

Pérez-Buitrago, N.; Fumero Caban, J. J. Mapping Tropical Dry Forest Habitats Integrating Landsat 



 14 

 

 

NDVI, Ikonos Imagery, and Topographic Information in the Caribbean Island of Mona. Revista de 

biología tropical 2008, 56, 625–39. 

15. Wulder, M. a.; White, J. C.; Goward, S. N.; Masek, J. G.; Irons, J. R.; Herold, M.; Cohen, W. B.; 

Loveland, T. R.; Woodcock, C. E. Landsat Continuity: Issues and Opportunities for Land Cover 

Monitoring. Remote Sensing of Environment 2008, 112, 955–969. 

16. Cohen, W. B.; Goward, S. N. Landsat’s Role in Ecological Applications of Remote Sensing. 

BioScience 2004, 54, 535. 

17. Dupas, C. A. SAR and Landsat TM Image Fusion for Land Cover Classification in the Brazilian 

Atlantic Forest Domain. International Archives of Photogrammetry and Remote Sensing 2000, 

XXXIII ，96-103. 

18. Justice, C. O.; Vermote, E.; Townshend, J. R. G.; Defries, R.; Roy, D. P.; Hall, D. K.; Salomonson, 

V. V.; Privette, J. L.; Riggs, G.; Strahler, a. et al. The Moderate Resolution Imaging 

Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research. IEEE 

Transactions on Geoscience and Remote Sensing 1998, 36, 1228–1249. 

19. Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based Multisensor Multiresolution 

Image Fusion. IEEE Transactions on Geoscience and Remote Sensing 1999, 37, 1212–1226. 

20. Hilker, T.; Wulder, M. a.; Coops, N. C.; Linke, J.; McDermid, G.; Masek, J. G.; Gao, F.; White, J. 

C. A New Data Fusion Model for High Spatial- and Temporal-resolution Mapping of Forest 

Disturbance Based on Landsat and MODIS. Remote Sensing of Environment 2009, 113, 1613–

1627. 

21. Hilker, T.; Wulder, M. a.; Coops, N. C.; Seitz, N.; White, J. C.; Gao, F.; Masek, J. G.; Stenhouse, 

G. Generation of Dense Time Series Synthetic Landsat Data Through Data Blending with MODIS 

Using a Spatial and Temporal Adaptive Reflectance Fusion Model. Remote Sensing of 

Environment 2009, 113, 1988–1999. 

22. Kalpoma, K. A.; Kudoh, J.; Member, A. Image Fusion Processing for IKONOS 1-m Color 

Imagery. IEEE Transactions on Geoscience and Remote Sensing 2007, 45, 3075–3086. 

23. Leckie, D. Advances in Remote Sensing Technologies for Forest Surveys and Management. 

Canadian Journal of Forest Research 1990, 20, 464-483. 

24. Helmer, E. H. H.; Amos, O. R.; Ópez, T. D. E. L. M. L.; Uiñones, M. Q.; Iaz, W. D.; Service, U. 

F.; Box, P. O. Mapping the Forest Type and Land Cover of Puerto Rico, a Component of the 

Caribbean Biodiversity Hotspot. Caribbean Journal of Science 2002, 38, 165–183. 

25. Roy, D. P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal 

MODIS–Landsat Data Fusion for Relative Radiometric Normalization, Gap Filling, and Prediction 

of Landsat Data. Remote Sensing of Environment 2008, 112, 3112–3130. 

26. Holben, B. N.; Characterization of Maximum Value Composites from Temporal AVHRR Data. 

Int. J. Remote Sensing 1986, 7, 1417-1434. 

27. Huete, A.; Justice, C.; Leeuwen, W. MODIS Vegetation Index Algorithm Theoretical Basis 

Document ATBD13: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


