

Expression of human H ferritin prompts the identification of a hitherto elusive yeast orthologue and enables parsing of distinct iron-induced cell death pathways in *Saccharomyces cerevisiae.*

Rawan Eid^{1,2}, Nagla T.T. Arab^{1,2}, Chamel Khoury^{1,2,3} Alistair Murray³, Nada Gharib¹, Sara Sheibani¹, Eric Boucher³, Hojatollah Vali³, Craig A. Mandato³, Paul G. Young² and Michael T Greenwood¹ ¹Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, CANADA ²Department of Biology, Queen's University, Kingston, Ontario, CANADA ³Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, CANADA **11th IMYA**

September 29th – October 3rd 2015 Porto, Portugal

Acute Cardiac Ischemia leads to necrosis and apoptosis

- Blockage in the coronary arterioles cuts off blood supply to downstream tissue
- The most centrally located area of the halted blood flow has the highest degree of ischemia
- Ischemia and subsequent reperfusion of the tissue leads to apoptosis.
- Delivery of anti-apoptotic genes would likely have very potent therapeutic effects following an ischemia reperfusion event
- Proof of principal in the literature:
 Over expression of anti-apoptotic genes
 decreases cardiac apoptosis (Matsushima et al. 2006) Circulation 113;1779; Fan et al. 2005 Circulation 111;1792)

http://pbm.tnw.utwente.nl/people/phd/bat.doc/bat-2.jpg

Complexity of Mammalian Proand Anti-Apoptotic Pathways

Portt et al. (2011) Anti-apoptosis and cell survival: A review. BBA 1813:315-321

Yeast Is a Model Eukaryotic Cell...

Khurana and Lindquist 2010. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nature Reviews Neuroscience

Yeast Apoptosis Pathways Resemble Their Mammalian Counterparts

Programmed cell death in unicellular organism promotes the survival of daughter cells (yeast colonies are clonogenic)

Büttner et al. 2006 J Cell Biol 175:521

Screening for Bax suppressors

Clapp et al 2012 Untangling the roles of anti-apoptosis in regulating programmed cell death using humanized yeast cells

Human Ferritin is a Bax Suppressor

This confirms the results of the screen showing that hFerr is a Bax suppressor and given that ferritin is a known pro-survival protein, hFerr thus appears to be a functional protein in yeast

Metabolism of Iron and the role of Ferritin

Adapted from BA et al. 2009 Metallomics 1, 292-311; Aroun et al 2013Photochemical & Photobiological Sciences 11, 118-134; Saliba et al. 2015 J Blood Med. 6: 197–209.

Yeast and Ferritin

•The yeast *S. cerevisiae* is an excellent model to study iron metabolism given that there are a great number of similarities between yeast and humans (Bleackley, 2011}

•One notable difference is the absence of the ferritin iron storage proteins in many fungi including yeast {Canessa, 2013}

•This suggest that human ferritn works on its own in yeast or that yeast has an unidentified ferritin like protein

Distribution of ferritins

Yeast may have a ferritin-like protein

- Putative yeast ferritin shares 20% identity with hFerritin
- yFer is a protein of unknown function
- Like human ferritin, yfer is a Bax suppressor

What are the functions of Ferritin in mammalian cells?

- 1. Human Ferritin Prevents ROS/PCD
- 2. Human Ferritin Stores Iron
- 3. High expression of ferritin induce iron starvation response
- 4. Altered gene doseage of ferritin will alter a the response to iron mediated PCD

1- Human and yeast Ferritin prevent copper GLUCOSE mediated PCD

2- Ferritins do not increase iron storage in yeast

•Control cells as well as cells overexpressing ferritins grown in media with 10-fold increase in iron show a 2fold in iron content.

•No significant increase in relative iron content storage occurring due to the presence of ferritin.

3- Ferritins induce iron starvation response

In spot assays:

decrease in the growth on nutrient agar plates of yeast cells expressing ferritins.

The doubling time:

control cells is 202 min ± 11 vs 277 min ± 10 in cells overexpressing human ferritin

4-Loss of yFer causes increased iron sensitivity

4-Overexpressing yFer increases iron resistance

Surprisingly... Blocking PCD specifically enhances iron mediated death

Anti-PCD and iron mediated cell death is vacuolar dependant

VMA3Δ mutants are supersensitive to iron but they are protected by anti-PCD1

This indicates that iron causes only one type of PCD in cells lacking a functional vacuole

Hypothesis: iron activates two PCD pathways

Anti-PCD1 and iron mediated cell death is vacuolar dependent

VMA3Δ mutants are supersensitive to iron but they are protected by anti-PCD1

This indicates that iron causes only one type of PCD in cells lacking a functional vacuole

Loss of vacuole promotes iron mediated apoptosis

Blocking PCD can activate alternative death pathways

"<u>Breaks and gears on TNF-</u> <u>induced necroptosis:</u> The composition of TNFR1 complex II determines the cell death outcome: apoptosis or necroptosis.

Within TNFR1 complex II, the apoptotic machinery FADD, c-FLIP and caspase-8 suppresses the induction of necroptosis, which requires the kinase activity of RIPK1 and RIPK3."

Vanlangenakker et al. 2012 Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 9:75-86.

CONCLUSIONS

- yFer may represent a yeast ferritin since it shares functional similarities to human ferritin and it is involved in iron metabolism
- Iron activates two distinct PCD inducing pathways in yeast
- Anti-PCD1 selectively inhibits one iron induced pathway
- The vacuole is critical for the other iron induced PCD pathway

Thank you!

THERE ARE THREE MAJOR PATHWAYS OF PCD

- Type I or Apoptosis

physiological response to specific suicide signals, or lack of survival signals

- Type II or Autophagy

Multifunctional process,

Is essential for cellular maintenance, cell viability differentiation and development
Is one of the mechanism of PCD that is accompanied by a massive cytoplasmic vacuolization

- Type III or necrosis (necroptosis)

- catastrophic form of death
- Chromatin clumps
- •Mitochondria swell and rupture

