$\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Pd} / \mathrm{C}$ as a reagent system to hydrogenate activated alkenes without O -or N -debenzylation

Nuha Al Soom, Thies Thiemann
Department of Chemistry, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
E-mail: nuhalsoom@hotmail.com

Abstract

NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Pd} / \mathrm{C}\) has been described as a reagent system to hydrogenate alkenoates and alkenones. Here, we show that O-debenzylation does not occur under the conditions, making it possible to hydrogenate a double bond under Pd / C catalysis without O -debenzylation or N -debenzylation.

Keywords- double bond hydrogenation, benzyl ether protective group

I. INTRODUCTION

Protective groups in synthetic organic chemistry are a valuable tool [1]. A functional group that is sensitive in a chemical transformation is first converted to a protected functional group. Thereafter, the actual chemical transformation is carried out with the molecule, and at some point later, the protective group is removed. One of the common protective groups for the alcohol (OH) function and for the carboxylic acid $\left(\mathrm{CO}_{2} \mathrm{H}\right)$ function is the benzyl moiety in form of an O -benzyl ether $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$ and O -benzyl ester $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$. Often, both can be removed by hydrogenolysis when using a palladium on carbon $(\mathrm{Pd} / \mathrm{C})$ catalyst [2]. Also, an N-function, such as in an amide, can be protected with a benzyl group, where the group is subsequently removed by Pd-catalysed hydrogenation. Under the conditions of the reductive debenzylation, double bonds can also be hydrogenated. If the actual desired transformation is to be the hydrogenation of a double bond in the substrate, then one risks losing the benzyl functions as protective groups in the molecule at the same time.
In the following, the authors present reaction conditions under which an activated double bond can be hydrogenated using Pd / C as a catalyst, but benzyl ethers, benzyl esters and N -benzyl amides are not converted to alcohols, acids, and amides respectively.

II. RESULTS AND DISCUSSION

Because of the danger of working with H_{2} in our laboratory when hydrogenating alkenes, we looked for a reaction system that would generate H_{2} in situ. Recently, A.T. Russo et al. [3,4] have published a reaction conditions $\left(\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Pd} / \mathrm{C}\right)$ that would achieve this. We could utilize this system, eg., in the hydrogenation of $\mathbf{1}$ to $\mathbf{2}$ (Scheme 1), where $\mathbf{2}$ is a precursor to quinones linked to a carrier. As solvent we exchanged the published toluene to the more easily removable benzene.

Scheme 1. Olefin hydrogenation with $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Pd} / \mathrm{C}$
The reagent system was also noted to be effective in $\mathrm{C}-\mathrm{Cl}$ dechlorination reactions. However, when we tried to used $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Pd} / \mathrm{C}$ in O -debenzylation reactions, the O-debenzylation, eg. from 3 to 4 , did not proceed, even with an excess of reagent (Scheme 2).

Scheme 2. O-Debenzylation of $\mathbf{3}$ does not proceed under the conditions
This gave us a reaction system that would allow us to hydrogenate double bonds in the presence of benzyl ether (eg., 6 to 7) and benzyl ester (eg., $\mathbf{8}$ to $\mathbf{9}$) functions, that would not be affected under the normal reaction conditions used (Scheme 3). Both of these reactions proceeded in excellent yield. Prolonged reaction times, and periodic addition of further acetic acid, however, led to the debenzylated acids, so that careful monitoring of the reaction progress is a must.

Multiple double bonds in a substrate are completely hydrogenated under the conditions as can be seen in the transformation of $\mathbf{1 4}$ to $\mathbf{1 5}$. Ketones are not reduced with $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, (cat.) Pd / C, evident in the conversions of $\mathbf{1 2} / \mathbf{1 4}$ to $\mathbf{1 3} / \mathbf{1 5}$. Upon careful handling, even a carbaldehyde-function can be retained in the reaction as can be seen in the transformation of 2-benzyloxycinnamaldehyde (16) to 2benzyloxyphenylpropionaldehyde (17) with only relatively small amounts of 2-benzyloxyphenylpropanol (18) evident as by-product (Scheme 4).

Scheme 3. Hydrogenation of cinnamates in the presence of benzyl ether and benzyl ester moieties.

Scheme 4. Hydrogenation of enones and enaldehydes in the presence of an O-benzyl function
It is known that also ammonia, ammonium acetate and pyridine suppress reductive O-debenzylation with hydrogen in the presence of Pd / C, while the hydrogenation of alkenes proceeds under the conditions [5]. Also, amines have been noted to suppress the reductive cleavage of benzyl ethers [6-8]. Momentarily, the mechanistic reasoning behind the suppression of the O-debenzylation in our case is not clear. The accepted
mechanism for the $\operatorname{Pd}(0)$ hydrogenative O-debenzylation is shown in Scheme 5. It must be noted that the reaction is taken place under heterogeneous conditions, while the mechanism does not take this into account. It is believed that the reductive step \mathbf{D} to \mathbf{E} is significantly important to determine the character of the " $\operatorname{Pd}(0)$ " species and may depend on the reactive system.

Scheme 5. Accepted mechanism for $\operatorname{Pd}(0)$ catalysed hydrogenative O-debenzylation.

23

24

Scheme 6. Hydrogenation of N-benzyl cinnamides to N -benzyl phenylpropionamides

Also, N-benzyl cinnamides 19, 21, and 23 were subjected to hydrogenation with $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in the presence of cat. Pd / C to afford the corresponding N-benzyl phenylpropionamides 20, 22, and $\mathbf{2 4}$ (Scheme 6). Due to the poor solubility of 23 in toluene or benzene, its hydrogenation was carried out in a mixture of toluene and THF ($1 / 1 \mathrm{v} / \mathrm{v}$). No N-debenzylation was observed in the reactions. Overall, the stability of the benzyl protective group (Bzl) was found to be -NHBzl ; $-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}>\mathrm{PhOCH}_{2} \mathrm{Ph}>-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$, under the reaction conditions used.

Scheme 7. Reductive transformation of nitroarenes to anilines with $\mathrm{NaBH}_{4}, \mathrm{AcOH}$, cat. Pd / C.
Finally, the use hydrogen in presence of Pd / C is an often used method to convert nitroarenes to anilines.[9] Other hydrogen sources such as formic acid and decaborane with Pd / C have been used in the transformation.[10,11] It was found that nitroarenes are reduced to anilines also with the system NaBH_{4} and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in the presence of cat. Pd / C. Here, benzyl 4-nitrobenzoate (25) could be converted cleanly to benzyl 4-aminobenzoate (26). Furthermore, benzyl 3-nitrobenzyl ether (27) could be transformed to 3aminobenzyl benzyl ether (28) (Scheme 7). However, in the case of both benzyl 2-nitrobenzoate (29) and benzyl 2-nitrobenzyl ether (32), the benzyl group was removed reductively to give mixtures of anthranilic acid (31) and benzyl 2-aminobenzoate (30) and of 2-aminobenzyl benzyl ether (33) and 2-aminophenol (34), respectively (Scheme 8). Here, close proximity of the nitro group to the benzyl function leads to partial reductive cleavage of the latter. While the reduction of the nitro group can pass through a number of intermediates and can be mechanistically complex, it is believed that a reactive intermediate along the pathway from nitro- to amino-function leads to the reductive cleavage of the benzyl ether in 33 and benzyl ester in $\mathbf{3 0}$.

Scheme 8. Reductive transformations of nitroarenes with benzyl functions in close proximity to the nitro group.

III. Conclusions

With $\mathrm{NaBH}_{4}, \mathrm{AcOH}$ in the presence of catalytic amounts of Pd / C, a simple reactive system was utilized to hydrogenate alkenes in the presence of O-benzyl ether and benzyl ester protective groups, which are not affected by the reaction. It was found that an aromatic nitro function is reduced to amino group by NaBH_{4}, $\mathrm{AcOH}, \mathrm{cat} . \mathrm{Pd} / \mathrm{C}$. Here a benzyl ether or a benzyl ester function can then be retained, when in the substrate the nitro group and the benzyl function are positioned adequately far apart.

IV. EXPERIMENTAL

Melting points were measured on a Stuart SMP 10 melting point apparatus and are uncorrected. Infrared spectra were measured with a Thermo/Nicolet Nexus 470 FT-IR ESP Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian $400 \mathrm{NMR}\left({ }^{1} \mathrm{H}\right.$ at $395.7 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100.5 MHz) and a Varian 200 MHz NMR spectrometer $\left({ }^{1} \mathrm{H}\right.$ at $200.0 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 50.3 MHz$)$. The chemical shifts are relative to TMS (solvent CDCl_{3}, unless otherwise noted). Mass spectra were measured with a JMS-01-SG-2 spectrometer. CHN-analysis was performed on a LECO TruSpec Micro instrument. Column chromatography was carried out on silica gel ($60 \mathrm{~A}, 230-400$ mesh, Sigma-Aldrich).
$5 \mathrm{w} \%$ Palladium on carbon (Aldrich, 205680) was used in all experiments. NaBH_{4} and acetic acid were acquired commercially. Benzene, toluene and THF were used without prior purification. Benzyl esters 6, 8, 10, 25, and 29 were prepared from the corresponding acids (benzyl alcohol, $\mathrm{PPh}_{3}, \mathrm{BrCCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) following a known procedure. Also, N-benzyl amides 19, 21, and 23 were synthesized from the
corresponding acids (benzylamine, $\mathrm{PPh}_{3}, \mathrm{BrCCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Substituted dibenzyl ethers 27 and 32 were obtained by Wilkinson-type etherification $\left(\mathrm{ArCH}_{2} \mathrm{OH}\right.$, benzyl chloride, $\left.\mathrm{KOH}, \mathrm{DMSO}\right)$ as was 2 benzyloxycinnamaldehyde (16) (2-hydroxycinnamaldehyde, benzyl chloride, KOH, DMSO). 12 and 14 were prepared by Wittig olefination, starting from 2-benzyloxybenzaldehyde and benzoylmethylidenetriphenylphosphorane and from 2-benzyloxycinnamaldehyde (16) and toluoylmethylidenetriphenylphosphorane.

Caution: In the presence of dry palladium on carbon, hydrogen enflames upon contact with air. Therefore, it is advisable to purge the reaction flasks with an inert gas before use in the described hydrogenation. Also, where filtrating the reaction mixture directly, especially when using a paper filter, it must be noted that the filter cake upon drying can enflame due to the fact that unreacted sodium borohydride slowly hydrolyses with air moisture, thereby releasing hydrogen. Therefore, after diligent washing with chloroform, the filter and filter cake should be immersed in water.

Methyl 3-[2-benzyloxyphenyl]propionate (7). ${ }^{[12]}$ - To a solution of methyl o-benzyloxycinnamate (6, 188 $\mathrm{mg}, 0.70 \mathrm{mmol})$ in benzene (10 mL) is given $\mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 5 \mathrm{wt} \%)$ and acetic acid ($\mathrm{AcOH}, 100 \mathrm{mg}$). Thereafter, is added portionwise $\mathrm{NaBH}_{4}(128 \mathrm{mg}, 3.38 \mathrm{mmol})$. After 3 h at rt , further $\mathrm{AcOH}(50 \mathrm{mg})$ and $\mathrm{NaBH}_{4}(60 \mathrm{mg}, 1.58 \mathrm{mmol})$ are added successively, and the resulting mixture is stirred at rt for 12 h . Thereafter, half conc. aq. HCl is added dropwise until there is no futher gas evolution. $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ is added and the mixture is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 20 \mathrm{~mL})$. The combined organic phase is dried over anhydrous MgSO_{4}, concentrated in vacuo and the residue is subjected to column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $7(175 \mathrm{mg}, 93 \%)$ as a colorless oil; $v_{\max }\left(\mathrm{neat} / \mathrm{cm}^{-1}\right) 3064,3033,2950,1736,1601$, $1588,1493,1453,1436,1381,1290,1241,1193,1162,1025,752 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.65\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=\right.$ $7.6 \mathrm{~Hz}), 3.01\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.87-6.92(2 \mathrm{H}, \mathrm{m}), 7.16-7.46$ $(8 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.2\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{OCH}_{3}\right), 69.7\left(\mathrm{OCH}_{2}\right), 111.5(\mathrm{CH}), 120.7$ $(\mathrm{CH}), 127.0(2 \mathrm{C}, \mathrm{CH}), 127.6(\mathrm{CH}), 127.8(\mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 129.1\left(\mathrm{C}_{\text {quat }}\right), 130.1(\mathrm{CH}), 137.2\left(\mathrm{C}_{\text {quat }}\right)$, $156.5\left(\mathrm{C}_{\text {quat }}\right), 173.8\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%) 270\left(\mathrm{M}^{+}, 85\right)$.

Benzyl 3-[2-benzyloxyphenyl]propionate (9). - colorless oil; $v_{\max }\left(\right.$ neat $^{2} \mathrm{~cm}^{-1}$) 3064, 3033, 2933, 1735, $1601,1588,1491,1450,1382,1232,1110,1009,910,853,742,696 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.71\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}\right.$ $=7.6 \mathrm{~Hz}), 3.05\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 5.09(4 \mathrm{H}, \mathrm{s}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 7.15-7.42(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 26.3\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 66.1\left(\mathrm{OCH}_{2}\right), 69.7\left(\mathrm{OCH}_{2}\right), 111.6(\mathrm{CH}), 120.8(\mathrm{CH}), 127.0(2 \mathrm{C}, \mathrm{CH}), 127.6$
$(\mathrm{CH}), 127.7(5)(\mathrm{CH}), 128.1(2 \mathrm{C}, \mathrm{CH}), 128.5(3 \mathrm{C}, \mathrm{CH}), 128.5(5)(2 \mathrm{C}, \mathrm{CH}), 129.1\left(\mathrm{C}_{\text {quat }}\right), 130.1(\mathrm{CH}), 136.1$ $\left(\mathrm{C}_{\text {quat }}\right), 137.2\left(\mathrm{C}_{\text {quat }}\right), 156.6\left(\mathrm{C}_{\text {quat }}\right), 173.2\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 346\left(\mathrm{M}^{+}, 73\right)$.

Benzyl 3-[4-ethoxyphenyl]propionate (11). - colorless oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3065,3033$, 2979, 2930 1736, $1612,1512,1454,1383,1297,1242,1150,1116,1048,923,825,737,698 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40(3 \mathrm{H}$, $\left.\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.64\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 2.90\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 3.99\left(2 \mathrm{H}, \mathrm{q},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.10$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.29\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=7.6 \mathrm{~Hz}\right), 7.34\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 6.79\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.08\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J\right.$ $=8.8 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9\left(\mathrm{CH}_{3}\right), 30.1\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 63.4\left(\mathrm{OCH}_{2}\right), 66.2\left(\mathrm{OCH}_{2}\right), 114.4$ $(2 \mathrm{C}, \mathrm{CH}), 128.2(2 \mathrm{C}, \mathrm{CH}), 128.5(2 \mathrm{C}, \mathrm{CH}), 129.2(2 \mathrm{C}, \mathrm{CH}), 132.3(\mathrm{CH}), 135.9\left(\mathrm{C}_{\text {quat }}\right), 138.9\left(\mathrm{C}_{\text {quat }}\right), 157.5$ $\left(\mathrm{C}_{\text {quat }}\right), 172.8\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$; MS (EI, 70 eV) m/z (\%) $284\left(\mathrm{M}^{+}, 43\right)$.

2-(2'-Benzyloxyphenyl)ethyl phenylketone (13). - colorless oil; $\nu_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3063,2929,1682,1598$, 1495, 1450, 1240, 1111, 1021, 740; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.09\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}\right), 3.27\left(2 \mathrm{H}, \mathrm{dt},{ }^{3} J=7.2\right.$ $\left.\mathrm{Hz},{ }^{4} J=1.2 \mathrm{~Hz}\right), 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.89-6.95(2 \mathrm{H}, \mathrm{m}), 7.17-7.25(2 \mathrm{H}, \mathrm{m}), 7.30-7.53(8 \mathrm{H}, \mathrm{m}), 7.90$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.1\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 69.9\left(\mathrm{OCH}_{2}\right), 111.6(\mathrm{CH}), 120.9(\mathrm{CH})$, $127.3(2 \mathrm{C}, \mathrm{CH}), 127.5(\mathrm{CH}), 127.9(\mathrm{CH}), 128.1(2 \mathrm{C}, \mathrm{CH}), 128.5(2 \mathrm{C}, \mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 129.8\left(\mathrm{C}_{\text {quat }}\right)$, $130.4(\mathrm{CH}), 132.8(\mathrm{CH}), 136.8\left(\mathrm{C}_{\text {quat }}\right), 137.2\left(\mathrm{C}_{\text {quat }}\right), 156.6\left(\mathrm{C}_{\text {quat }}\right), 200.1\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$.

1-Benzyloxy-2-[4-(4-methylbenzoyl)butyl]benzene (15). - colorless oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3062,3032$, 2927, 2858, 1680, 1606, 1493, 1451, 1379, 1290, 1238, 1180, 1112, 1025, 752, 696; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $1.61-1.82(4 \mathrm{H}, \mathrm{m}), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.72\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.93\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 5.07(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2}\right), 6.88-6.91(2 \mathrm{H}, \mathrm{m}), 7.13-7.44(9 \mathrm{H}, \mathrm{m}), 7.83\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.6$ $\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{OCH}_{2}\right), 111.6(\mathrm{CH}), 120.7(\mathrm{CH}), 126.9(\mathrm{CH})$, $127.1(2 \mathrm{C}, \mathrm{CH}), 127.7(\mathrm{CH}), 128.2(2 \mathrm{C}, \mathrm{CH}), 128.5(2 \mathrm{C}, \mathrm{CH}), 129.2(2 \mathrm{C}, \mathrm{CH}), 130.0(\mathrm{CH}), 131.1\left(\mathrm{C}_{\text {quat }}\right)$, $134.6\left(\mathrm{C}_{\text {quat }}\right), 137.5\left(\mathrm{C}_{\text {quat }}\right), 143.5\left(\mathrm{C}_{\text {quat }}\right), 156.5\left(\mathrm{C}_{\text {quat }}\right), 200.2\left(\mathrm{C}_{\text {quat, }}, \mathrm{CO}\right)$.

3-(2-Benzyloxyphenyl)propionaldehyde (17). ${ }^{[13]}$ - colorless oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right)$ 2929, 1722, 1600, 1493, 1452, 1382, 1238, 1118, 1019, 748; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.75\left(2 \mathrm{H}, \mathrm{dt},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}\right), 3.00(2 \mathrm{H}$, $\mathrm{t}, 3 \mathrm{~J}=7.6 \mathrm{~Hz}), 5.08(2 \mathrm{H}, \mathrm{s}), 6.87-6.92(2 \mathrm{H}, \mathrm{m}), 7.13-7.20(2 \mathrm{H}, \mathrm{m}), 7.30-7.43(5 \mathrm{H}, \mathrm{m}), 9.78\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=\right.$ $1.6 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.5\left(\mathrm{CH}_{2}\right), 43.9\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{OCH}_{2}\right), 111.6(\mathrm{CH}), 120.8(\mathrm{CH}), 127.1(2 \mathrm{C}$,
$\mathrm{CH}), 127.7(\mathrm{CH}), 127.9(\mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 128.9\left(\mathrm{C}_{\text {quat }}\right), 130.1(\mathrm{CH}), 137.1\left(\mathrm{C}_{\text {quat }}\right), 156.5\left(\mathrm{C}_{\text {quat }}\right), 202.4$ (CHO); MS (EI, 70 eV) m/z (\%) $240\left(\mathrm{M}^{+}, 13\right)$.

3-(2-Benzyloxyphenyl)propan-1-ol (18). ${ }^{[13]}$ - colorless oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3351$ (broad, OH), 3064, 3033, 2933, 2864, 1600, 1587, 1493, 1452, 1381, 1239, 1041, 910, 751,$696 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.86(2 \mathrm{H}, \mathrm{tt}$, $\left.{ }^{3} J=7.2 \mathrm{~Hz},{ }^{3} J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.78\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.60\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.08(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2}\right), 6.90-6.94(2 \mathrm{H}, \mathrm{m}), 7.15-7.20(2 \mathrm{H}, \mathrm{m}), 7.31-7.45(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.0\left(\mathrm{CH}_{2}\right)$, $33.0\left(\mathrm{CH}_{2}\right), 61.9\left(\mathrm{OCH}_{2}\right), 70.1\left(\mathrm{OCH}_{2}\right), 111.7(\mathrm{CH}), 121.0(\mathrm{CH}), 127.2(\mathrm{CH}), 127.3(2 \mathrm{C}, \mathrm{CH}), 128.0(\mathrm{CH})$, $128.6(2 \mathrm{C}, \mathrm{CH}), 130.3(\mathrm{CH}), 130.4\left(\mathrm{C}_{\text {quat }}\right), 137.0\left(\mathrm{C}_{\text {quat }}\right), 156.6\left(\mathrm{C}_{\text {quat }}\right)$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%) 240\left(\mathrm{M}^{+}\right.$, 25).
N-Benzyl 3-phenylpropionamide (20). - To a mixture of N-benzyl cinnamide ($335 \mathrm{mg}, 1.41 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(70 \mathrm{mg}, 5 \mathrm{w} \%)$ in toluene $(8 \mathrm{~mL})$ was added acetic acid (210 mg) and subsequently $\mathrm{NaBH}_{4}(185 \mathrm{mg})$. After the mixture was stirred for 14 h , it was filtered, and the filter cake was washed with CHCl_{3} (3 X 15 mL). The combined organic phase was concentrated in vacuo, and the residue was subjected to column chromatography on silica gel (ether/ $\mathrm{CHCl}_{3} /$ hexane $2: 2: 1$) to give $20(315 \mathrm{mg}, 95 \%)$ as a colorless solid, mp . $90-93{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3292(\mathrm{~s}, \mathrm{NH}), 3061,3026,2924,1639,1543,1495,1453,1227,1029,741,694 ;$ $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.51\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 2.99\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 4.38\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}\right), 5.66$ $(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 7.12-7.29(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 31.7\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 43.6\left(\mathrm{CH}_{2}\right), 126.3$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 127.7(2 \mathrm{C}, \mathrm{CH}), 128.4(2 \mathrm{C}, \mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 128.7(2 \mathrm{C}, \mathrm{CH}), 138.1\left(\mathrm{C}_{\text {quat }}\right), 140.7$ $\left(\mathrm{C}_{\text {quat }}\right), 171.9\left(\mathrm{C}_{\text {quat, }}, \mathrm{CO}\right)$.
N-Benzyl 3-(2,5-dimethoxyphenyl)propionamide (22). - as a colorless solid, mp. $154-155{ }^{\circ} \mathrm{C}$; $v_{\max }$ $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3311,3063,2948,2839,1638,1593,1541,1474,1255,1161,1113,774 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.61\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.95\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 3.67\left(2 \mathrm{C}, 2 \mathrm{OCH}_{3}\right), 6.42(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.48\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=\right.$ $8.4 \mathrm{~Hz}), 7.13\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}\right), 7.15-7.20(2 \mathrm{H}, \mathrm{m}), 7.26-7.33(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 18.6\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right), 43.7\left(\mathrm{CH}_{2}\right), 55.4\left(2 \mathrm{C}, 2 \mathrm{OCH}_{3}\right), 103.6(2 \mathrm{C}, \mathrm{CH}), 116.5\left(\mathrm{C}_{\text {quat }}\right), 127.4(2 \mathrm{C}$, $\mathrm{CH}), 128.0(2 \mathrm{C}, \mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 138.2\left(\mathrm{C}_{\text {quat }}\right), 157.9\left(2 \mathrm{C}, \mathrm{C}_{\text {quat }}\right), 173.1\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$.
N-Benzyl 3-(3-methoxy-4-propoxyphenyl)propionamide (24). - as a colorless solid; mp. $127^{\circ} \mathrm{C}$; $v_{\max }$ $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3292(\mathrm{NH}), 3057,3028,2962,2934,2874,1640,1550,1515,1453,1256,1227,1136,1025$,

803, 741, 697; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02\left(3 \mathrm{H}, \mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.85\left(2 \mathrm{H}, \mathrm{qt}, \mathrm{CH}_{2},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{3} J=6.8\right.$ $\mathrm{Hz}), 2.49\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=6.8\right.$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 4.38\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=1.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.69(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 6.69\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 6.71$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J=2.0 \mathrm{~Hz}\right), 6.76\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.24-7.31(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.5\left(\mathrm{CH}_{3}\right)$, $22.5\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{CH}_{2}\right), 43.6\left(\mathrm{NCH}_{2}\right), 55.9\left(\mathrm{OCH}_{3}\right), 70.5\left(\mathrm{OCH}_{2}\right), 112.1(\mathrm{CH}), 113.0(\mathrm{CH})$, $120.2(\mathrm{CH}), 127.5(\mathrm{CH}), 127.7(2 \mathrm{C}, \mathrm{CH}), 128.7(2 \mathrm{C}, \mathrm{CH}), 133.3\left(\mathrm{C}_{\text {quat }}\right), 138.1\left(\mathrm{C}_{\text {quat }}\right), 147.0\left(\mathrm{C}_{\text {quat }}\right), 149.3$ $\left(\mathrm{C}_{\text {quat }}\right), 172.0\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$.

Benzyl 4-aminobenzoate (26). - colorless needles, mp. $97^{\circ} \mathrm{C}$; $\quad \quad_{\text {max }}\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3456,3359,3223,2937$, $1683,1632,1572,1517,1436,1380,1310,1278,1170,1116,974,846,771,730,691 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.06\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right), 5.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.62\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.30-7.44(5 \mathrm{H}, \mathrm{m}), 7.88(2 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J=8.8 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 66.1\left(\mathrm{OCH}_{2}\right), 113.8(2 \mathrm{C}, \mathrm{CH}), 119.6\left(\mathrm{C}_{\text {quat }}\right), 128.0(2 \mathrm{C}, \mathrm{CH}), 128.5$ $(2 \mathrm{C}, \mathrm{CH}), 131.8(3 \mathrm{C}, \mathrm{CH}), 136.6\left(\mathrm{C}_{\text {quat }}\right), 150.9\left(\mathrm{C}_{\text {quat }}\right), 166.5\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$.

3-Aminobenzyl benzyl ether (28). ${ }^{[14]}$ - as a pale yellow oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3500(\mathrm{bs}, \mathrm{NH}), 3369(\mathrm{NH})$, $3029,2855,1619,1493,1358,1299,1068 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.48\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.62$ $-6.64(1 \mathrm{H}, \mathrm{m}), 6.73-6.77(2 \mathrm{H}, \mathrm{m}), 7.14\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.25-7.39(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 70.0\left(\mathrm{OCH}_{2}\right), 70.1\left(\mathrm{OCH}_{2}\right), 111.5(\mathrm{CH}), 114.5(\mathrm{CH}), 116.2(\mathrm{CH}), 117.6(\mathrm{CH}), 127.8(2 \mathrm{C}$, $\mathrm{CH}), 128.4(2 \mathrm{C}, \mathrm{CH}), 129.3(\mathrm{CH}), 138.3\left(\mathrm{C}_{\text {quat }}\right), 139.5\left(\mathrm{C}_{\text {quat }}\right), 146.2\left(\mathrm{C}_{\text {quat }}\right)$.

Anthranilic acid benzyl ester (30). - To a mixture of benzyl 2-nitrobenzoate ($29,361 \mathrm{mg}, 1.4 \mathrm{mmol}$), Pd / C $(100 \mathrm{mg}, 5 \mathrm{w} \%)$ and $\mathrm{AcOH}(210 \mathrm{mg})$ in benzene $(10 \mathrm{~mL})$ is slowly added $\mathrm{NaBH}_{4}(185 \mathrm{mg}, 4.87 \mathrm{mmol})$, and the resulting reaction mixture is stirred at rt for 14 h . Thereafter, the mixture is filtrated and the filter cake is washed with $\mathrm{CHCl}_{3}\left(2 \mathrm{X} 20 \mathrm{~mL}\right.$). Column chromatography on silica gel (ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 10 \rightarrow$ ethyl acetate/hexane 1:1) gave 30 ($225 \mathrm{mg}, 71 \%$) as a pale yellow oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3033,2950,1693,1615$, $1487,1455,1378,1291,1243,1161 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.34\left(2 \mathrm{H}, \mathrm{s} \mathrm{OCH}_{2}\right), 6.62-6.68(2 \mathrm{H}, \mathrm{m}), 7.24-$ $7.41(4 \mathrm{H}, \mathrm{m}), 7.44\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.93\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J=8.0 \mathrm{~Hz}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 66.0\left(\mathrm{OCH}_{2}\right), 110.7$ $\left(\mathrm{C}_{\text {quat }}\right), 116.4(\mathrm{CH}), 116.7(\mathrm{CH}), 128.0(2 \mathrm{C}, \mathrm{CH}), 128.1(\mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 131.3(\mathrm{CH}), 134.2(\mathrm{CH})$, $136.3\left(\mathrm{C}_{\text {quat }}\right), 150.5\left(\mathrm{C}_{\text {quat }}\right), 167.9\left(\mathrm{C}_{\text {quat }}, \mathrm{CO}\right)$ and $31(38 \mathrm{mg}, 20 \%)$.

Anthranilic acid (31). - To a mixture of benzyl 2-nitrobenzoate (29, $361 \mathrm{mg}, 1.4 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}$, $5 \mathrm{w} \%$) and $\mathrm{AcOH}(210 \mathrm{mg})$ in benzene (10 mL) is slowly added $\mathrm{NaBH}_{4}(185 \mathrm{mg}, 4.87 \mathrm{mmol})$, and the resulting reaction mixture is stirred at rt for 14 h . Then, additional $\mathrm{AcOH}(105 \mathrm{mg})$ and NaBH_{4} (100 mg , 2.63 mmol) were added, and the reaction was stirred at rt for an additional 10 h . Thereafter, half-conc. aq HCl is added dropwise. Subsequently, water (25 mL) is added, and the mixture is extracted with ethyl acetate (3 X 20 mL). The combined organic phase was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was subjected to column chromatography on silica gel (ethyl acetate - hexane 1:1) to give anthranilic acid (31, $163 \mathrm{mg}, 85 \%$) as a beige-colored solid, mp. 144-146 ${ }^{\circ} \mathrm{C}$ (Lit. $146-147{ }^{\circ} \mathrm{C}^{[15]}$); $v_{\max }$ $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3472(\mathrm{NH}), 3373(\mathrm{NH}), 3040-2350(\mathrm{bs}, \mathrm{OH}), 1672,1617,1588,1563,1485,1419,1301,1247$, $1161,916,753,659 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.65-6.69(2 \mathrm{H}, \mathrm{m}), 7.29-7.33(1 \mathrm{H}, \mathrm{m}), 7.92\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.4\right.$ $\left.\mathrm{Hz},{ }^{4} J=1.6 \mathrm{~Hz}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 109.5\left(\mathrm{C}_{\text {quat }}\right), 116.5(\mathrm{CH}), 116.8(\mathrm{CH}), 132.1(\mathrm{CH}), 135.1(\mathrm{CH})$, $151.1\left(\mathrm{C}_{\text {quat }}\right), 173.1\left(\mathrm{C}_{\text {quat, }}, \mathrm{CO}\right)$; $\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 137\left(\mathrm{M}^{+}, 64\right), 119(100), 92\left(81, \mathrm{M}^{+}-\mathrm{CHO}_{2}\right)$.

Benzyl 3-nitrobenzyl ether (33). - as a pale yellow oil; $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3031,2861,1528,1349,1071$, $1028,804,731,669 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.29-7.38(5 \mathrm{H}, \mathrm{m})$, $7.52\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{3} J=8.0 \mathrm{~Hz}\right), 7.68-7.71(1 \mathrm{H}, \mathrm{m}), 8.13-8.16(1 \mathrm{H}, \mathrm{m}), 8.23-8.24(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 70.8\left(\mathrm{OCH}_{2}\right), 72.8\left(\mathrm{OCH}_{2}\right), 122.3(\mathrm{CH}), 122.6(\mathrm{CH}), 127.8(2 \mathrm{C}, \mathrm{CH}), 128.0(\mathrm{CH})$, $128.6(2 \mathrm{C}, \mathrm{CH}), 129.3(\mathrm{CH}), 133.4(\mathrm{CH}), 137.5\left(\mathrm{C}_{\text {quat }}\right), 140.5\left(\mathrm{C}_{\text {quat }}\right), 148.3\left(\mathrm{C}_{\text {quat }}\right)$.

2-Aminophenol (34). - colorless solid; mp. $173{ }^{\circ} \mathrm{C}$ (Lit. $174{ }^{\circ} \mathrm{C}^{[15]}$); $v_{\max }\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right) 3377$ (NH), 3306 (NH), 1608, 1515, 1475, 1406, 1285, 1271, 900, 751, 745; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.{ }^{6}\right) 4.70(2 \mathrm{H}, \mathrm{bs}), 6.40$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right), 6.54-6.59(2 \mathrm{H}, \mathrm{m}), 6.65\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}\right), 8.70(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}) ; \delta_{\mathrm{C}}(100.5 \mathrm{MHz}$, DMSO-d ${ }^{6}$) $114.5(2 \mathrm{C}, \mathrm{CH}), 116.5(\mathrm{CH}), 119.5(\mathrm{CH}), 136.4\left(\mathrm{C}_{\text {quat }}\right), 144.0\left(\mathrm{C}_{\text {quat }}\right)$; MS (EI, 70 eV$) \mathrm{m} / \mathrm{z}(\%)$ $109\left(\mathrm{M}^{+}, 100\right), 80(32)$.

v. References

[1] P. G. M. Wuts, T.W. Greene, Greene’s Protective Groups in Organic Synthesis, $4^{\text {th }}$ ed., John Wiley \& Sons, 2007.
[2] P.N. Rylander, "Hydrogenation Methods", Academic Press, NY, 157-163, 1985.
[3] A.T. Russo, K.L. Amezcua, V.A. Huynh, Z.M. Rousslang, D.B. Cordes, "A simple borohydride-based method for selective 1,4-conjugate reduction of α, β-unsaturated carbonyl compounds", Tetrahedron Lett., 52, pp. 6823-6826, 2011.
[4] A. T. Tran, V. A. Huynh, E. M. Friz, S. K. Whitney, D. B. Cordes, "A general method for the rapid reduction of alkenes and alkynes using sodium borohydride, acetic acid, and palladium", Tetrahedron Lett., 50, pp. 1817-1819, 2009.
[5] H. Sajiki, "Selective inhibition of benzyl ether hydrogenolysis with Pd / C due to the presence of ammonia, pyridine or ammonium acetate", Tetrahedron Lett.,36, pp. 3465-3468, 1995.
[6] B.P. Czech, R.A. Bartsch, "Effect of amines on O-benzyl group hydrogenolysis", J. Org. Chem., 49, pp. 4076-4078, 1984.
[7] M.L.M. Pennings, D.N. Reinhoudt, "Chemistry of four-membered nitrones. 5. Synthesis and oxidation of 1-hydroxyazetidines", J. Org. Chem., 48, pp. 4043-4048, 1983.
[8] G.W.J. Fleet, P.W. Smith, "Enantioselective syntheses of deoxymannojirimycin, fagomine, and $2 R, 5 R-$ dihydroxymethyl-3R,4R-dihydroxypyrrolidine from D-glucose", Tetrahedron Lett., 26, pp. 1469-1472, 1985.
[9] G.S. Vanier, "Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure", Synlett, 131-135, 2007.
[10] H. Berthold, T. Schotten, H. Hönig, Synthesis, pp. 1607-1610, 2002.
[11] J.W. Bae, Y.J. Cho, S.H. Lee, C.-O.M. Yoon, C.M. Yoon, Chem. Commun., pp. 1857-1858, 2000.
[12] A. Rosales, I. Rodríguez-García, C. López-Sánchez, M. Álvarez-Corral, Tetrahedron, 67, pp. 3071 3075, 2011.
[12] S. K. Das, G. Panda, Eur. J. Org. Chem., pp. 204-207, 2009.
[13] H. Chen, G. Bashiardes, P. Mailliet, A. Commerçon, F. Sounigo, J. Boiziau, F. Parker, B. Tocques, B.P. Roques, C. Gorbay, Anti-Cancer Drug Design, 11, 49 - 71, 1996.
[15] CRC Handbook of Chemistry and Physics 53 ${ }^{\text {rd }}$ ed., CRC Press, Cleveland, OH, 1972.

