Study of product composition of the reaction between 1,1,2,2-tetrabromoethane and imidazole or 1,2,4-triazole in a superbasic medium

Maxim Klyuchenko, Pulat Kadirov, Anastasiya Kuznetsova, Andrei Potapov National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050, Russia E-mail: potapov@tpu.ru

Abstract

Influence of reagent ratio on the composition of products of the reaction between 1,1,2,2-tetrabromoethane and imidazole or 1,2,4-triazole in a superbasic medium (potassium hydroxide – dimethyl sulfoxide) was investigated using GC/MS technique. It was found that nucleophilic substitution reaction is always accompanied by elimination reactions (dehydrobromination and debromination). In addition to 1,1,2,2-tetra(azol-1-yl)ethane, 1,1,2-tri(azol-1-yl)ethenes and 1,2-di(azol-1-yl)ethenes, as well as 1,2-di(azol-1-yl)-1-bromoethenes were detected. Reaction pathway that explains the formation of all major products was proposed.

Keywords: imidazole, triazole, terabromoethane, superbasic medium, nucleophilic substitution, elimination

Introduction

Compounds bearing several heterocyclic moieties can act as multidentate ligands for the construction of metal-organic frameworks (MOFs) [1–4]. Constant design of new MOFs is stimulated by their high capacity for gas storage [5–7], photophysical properties [8], sensor capabilities [9] and excellent catalytic performance [10].

Tetra(pyrazolyl)derivatives were successfully used for preparation of coordination polymers and molecular complexes [11–15]. In our preceding studies we have developed a synthetic procedure for the simplest bitopic tetra(pyrazolyl)derivative – 1,1,2,2-tetra(pyrazol-1-yl)ethane [16] and determined the crystal structure of its copper(II) molecular complex [17]. In this communication we report the study of the reaction between 1,2,4-triazole and imidazole and 1,1,2,2-tetrabromoethane with the aim to prepare new tetra(azolyl) polydentate ligands.

Results and discussion

The reactions between 1,2,4-triazole (or imidazole) and 1,1,2,2-tetrabromoethane (TNE) were carried out in a superbasic medium potassium hydroxide – dimethyl sulfoxide (scheme 1). Molar ratio of reagents (TBE to azole) was varied from 1:1 to 1:4, while other parameters (temperature, concentration of the base) were held constant (table 1).

Scheme 1

Run	AzH (mmol)	TBE (mmol)	KOH (mmol)	DMSO (ml)	t (°C)
A	1.0	1.0	2	1	80
В	1.0	0.5	2	1	80
С	1.0	0.25	2	1	80

Table 1 – Screening of reaction conditions between azoles and TBE

As it is well known, under basic conditions nucleophilic substitution reactions are accompanied by elimination reactions [18]. In accordance with this, products of both of these processes were detected in the reaction mixtures (table 2, scheme 2).

	-							
Run	Molar % (GC/MS)							
	Tr ₄	Tr ₃	Tr ₂	Tr₂Br	TrBr ₂	gem-	Tr_2CH_2	$(Tr_2C)_2$
				(E & Z)	(E & Z)	$TrBr_2$		
R.T.	19.5	16.7	12.4	15.1;	14.6	11.3	10.4	21.5
(min)				15.4				
М	298	229	162	241	252	253	150	296
(g/mol)								
A		92.0%		30.0%	56.0%			4.9%
В	7.0%	19.7%		19.5%	49.0%	14.8%		3.7%
С	17.6%	33.1%	8.3%				39.5%	

Table 2 – Composition of product mixtures of the reaction between TrH and TBE

Reaction with imidazole gave similar results and is not discussed in detail in this communication.

Experimental

A suspension of 1mmol of 1,2,4-triazole (or imidazole), 2 mmol of KOH, 0.25-1 mmol of TBE in 1 ml of DMSO were incubated at 80 °C. The reaction progress was monitored by TLC. After two hours, full conversion of the starting azole was achieved. The reaction mixtures were diluted with water (5 ml), DMSO-water mixture was removed on a rotary evaporator, the residue was treated by methylene chloride to extract the organic products, which were then analyzed by GC/MS method.

Gas chromatography-mass spectrometry analysis was performed using Agilent 7890A gas chromatograph equipped with Agilent MSD 5975C mass-selective detector. The relative quantities of the products were determined from peak areas without correction coefficients.

Summary

In all the cases, the reactions yielded complex product mixtures, in which triazolyland bromo-substituted ethenes were the dominating components.

When triazole reacted with TBE in 1:1 ratio, bromoethenes containing one or two triazole rings were the major products.

For 2:1 TrH-TBE reaction, 1,1,2-tris(triazol-1-yl)ethane Tr_3 was detected as a second to the dominating product.

In case of 4:1 TrH-TBE ratio, Tr_3 was obtained as a major product, while only little amount of Tr_4 was formed and no $TrBr_2$ was detected at all.

Acknowledgements

The reported study was supported by the Russian Scientific Fund, grant No. 15-13-10023.

References

[1] G.A. Senchyk, A.B. Lysenko, H. Krautscheid, E.B. Rusanov, A.N. Chernega, K.W. Krämer, et al., Functionalized adamantane tectons used in the design of mixed-ligand copper(II) 1,2,4-triazolyl/carboxylate metal-organic

frameworks, Inorg. Chem. 52 (2013) 863-872. doi:10.1021/ic3020157.

- [2] D.L. Reger, E.A. Foley, M.D. Smith, Structural impact of multitopic thirdgeneration bis(1-pyrazolyl)methane ligands: double, mononuclear metallacyclic silver(I) complexes, Inorg. Chem. 49 (2010) 234–242. doi:10.1021/ic901899r.
- [3] K.T. Prasad, B. Therrein, K.M. Rao, Syntheses and characterization of mono and dinuclear complexes of platinum group metals bearing benzene-linked bis(pyrazolyl)methane ligands, J. Organomet. Chem. 695 (2010) 1375–1382.
- [4] S. Bieller, F. Zhang, M. Bolte, J.W. Bats, H.-W. Lerner, M. Wagner, Bitopic Bis- and Tris(1-pyrazolyl)borate Ligands: Syntheses and Structural Characterization, Organometallics. 23 (2004) 2107–2113. doi:10.1021/om049954e.
- [5] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage., Science. 295 (2002) 469–72. doi:10.1126/science.1067208.
- [6] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks., Chem. Soc. Rev. 38 (2009) 1477–504. doi:10.1039/b802426j.
- [7] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, et al., Carbon dioxide capture in metal-organic frameworks., Chem. Rev. 112 (2012) 724–81. doi:10.1021/cr2003272.
- [8] Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal-organic frameworks., Chem. Rev. 112 (2012) 1126–62. doi:10.1021/cr200101d.
- [9] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors., Chem. Rev. 112 (2012) 1105–25. doi:10.1021/cr200324t.
- [10] A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Metalorganic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations., Chem. Soc. Rev. 44 (2015) 6804–49. doi:10.1039/c4cs00395k.

- [11] D.L. Reger, J.R. Gardinier, T.C. Grattan, M.R. Smith, M.D. Smith, Synthesis of the silver(I) complex of CH2[CH(pz 4Et)2]2 containing the unprecedented [Ag(NO3)4]3- anion: A general method for the preparation of 4-(alkyl)pyrazoles, New J. Chem. 27 (2003) 1670–1677.
- [12] D.L. Reger, R.P. Watson, M.D. Smith, P.J. Pellechia, Controlling the addition of metal centers to a bis(pyrazolyl)methane starburst ligand: Direct routes to mono-, bi-, and trimetallic rhenium(I) complexes, Organometallics. 25 (2006) 743–755.
- [13] D.L. Reger, J.R. Gardinier, R.F. Semeniuc, M.D. Smith, Silver complexes of 1,1,3,3-tetrakis(pyrazol-l-yl)propane: The "quadruple pyrazolyl embrace" as a supramolecular synthon, Dalt. Trans. (2003) 1712–1718.
- [14] D.L. Reger, R.P. Watson, J.R. Gardinier, M.D. Smith, Impact of variations in design of flexible bitopic bis(pyrazolyl)methane ligands and counterions on the structures of silver(I) complexes: Dominance of cyclic dimeric architecture, Inorg. Chem. 43 (2004) 6609–6619.
- [15] N. Dehury, S.K. Tripathy, A. Sahoo, N. Maity, S. Patra, Facile tandem Suzuki coupling/transfer hydrogenation reaction with a bis-heteroscorpionate Pd-Ru complex, Dalt. Trans. 43 (2014) 16597–16600. doi:10.1039/C4DT02465F.
- [16] A.S. Potapov, E.A. Nudnova, A.I. Khlebnikov, V.D. Ogorodnikov, T. V Petrenko, Synthesis of new polydentate pyrazolyl-ethene ligands by interaction of 1H-pyrazole and 1,1,2,2-tetrabromoethane in a superbasic medium, J. Heterocycl. Chem. 48 (2011) 645–651. doi:10.1002/jhet.566.
- [17] A.S. Potapov, E.A. Nudnova, A.I. Khlebnikov, V.D. Ogorodnikov, T. V Petrenko, Synthesis, crystal structure and electrocatalytic activity of discrete and polymeric copper(II) complexes with bitopic bis(pyrazol-1-yl) methane ligands, Inorg. Chem. Commun. 53 (2015) 72–75.
- [18] V.J. Shiner, Substitution and Elimination Rate Studies on Some Deuteroisopropyl Bromides, J. Am. Chem. Soc. 74 (1952) 5285–5288. doi:10.1021/ja01141a014.