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Abstract 

Transforming growth factor β receptor-associated kinase 1 (TAK1) or mitogen activated-protein 

kinase kinase kinase 7 (MAP3K7) is a serine/threonine kinase which forms a key part of 

canonical immune and inflammatory signaling pathways. A 5-point pharmacophore model was 

developed and the generated pharmacophore model was used to derive a predictive atom-based 

3D quantitative structure–activity relationship analysis (3D-QSAR) model for the studied 

dataset. The obtained 3D-QSAR model has an excellent correlation coefficient value (r
2
 = 0.97) 

along with good statistical significance as shown by high Fisher ratio (F = 266.8). The QSAR 

model suggests that electron-withdrawing character, hydrogen bond-donating groups, 

hydrophobic and negative ionic groups positively contribute to the TAK1 inhibition. 
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1. Introduction 

Transforming growth factor β receptor-associated kinase 1 (TAK1) or mitogen activated-protein 

kinase kinase kinase 7 (MAP3K7) is a serine/threonine kinase which forms a key part of 

canonical immune and inflammatory signaling pathways.
1
 TAK1 mediates signaling downstream 

of multiple cytokine receptors (TGFβR, TNFR, TLRs, IL-1R, etc.). Although the precise 

mechanisms governing TAK1 activation and signaling are complex, involving extensive 

ubiquitination and the TAB family of adaptor proteins, it has been established that TAK1 

directly phosphorylates and activates members of the MAP kinase kinase (MKK) family, 

including MKK3/4/6/7, as well as the IKK family, which are the immediate activators of the 

MAP kinases p38 and JNK and the transcription factor NFκB.
 2-4

 

Members of the family of nuclear factor-κB (NF-κB) transcription factors regulate expression of 

a large number of genes involved in immune and inflammatory responses, as well as in cell 

survival, proliferation, and differentiation. Inappropriate activation of NF-κB signaling has been 

implicated in the pathogenesis of chronic inflammation, autoimmunity, and various cancers.
5
 For 

this reason, there has been some interest in exploring the therapeutic potential of TAK1 

inhibitors in cancers with an inflammatory component, for example, ovarian and colorectal 

carcinomas, as well as in hematological malignancies.
6-7

 

A large number of molecular modelling programs have been developed and widely used in the 

pharmaceutical and biological industry as well as in academia. The extensive applications of 

these software‟s and the chemical databases have made CADD a valuable tool in drug discovery 

and development process.
8-10

 Pharmacophore modelling involves extracting common chemical 

features (hydrogen-bond acceptors, hydrogen bond donors, hydrophobic regions and positively 

or negatively charged groups) from 3D structures of a set of known ligands, representative of 

essential ligand–receptor interactions. In medicinal chemistry, pharmacophore modelling is used 

not only for hit-and-lead identification but also for lead optimization, drug design and discovery. 

3D QSAR analysis is performed for generating models which correlates biological activity with 

physico-chemical properties of the molecules. A statistically significant 3D QSAR model helps 

in better understanding of structure activity relationship of a series of molecules and predicts the 

activity of yet to be synthesized compounds.
11

 

Related to the foregoing studies, the present paper reports 3D-QSAR analysis of set of 7-

aminofuro [2,3-c]pyridine derivatives, reported by Hornberger K. R. et al. 
12

 and intends to 
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provide the platform to develop new compounds over existing substituted pyridines. Pyridines 

scaffolds are to modify and a range of molecules can be synthesized. However, substituted 

pyridines exhibit a range of diversity in the structures as well as in biological activities so this 

series of molecules is good for generating the significant quantitative relationship. The 

developed atom-based 3D-QSAR model highlight the structural features of pyridine analogs for 

binding to TAK-1 which is useful for further design of more potent TAK-1 inhibitory agent 

having anticancer activity. 

2. Materials and Methods 

2.1. Dataset for analysis 

The present 3D-QSAR study was performed on substituted 7-aminofuro [2,3-c]pyridine 

derivatives synthesized by Hornberger K. R. et al.
 12

 for the development of ligand based CPHs 

(common pharmacophore hypothesis). Out of 57 compounds, 54 compounds with well defined 

TAK-1 inhibitory activity (given as IC50 values in μM concentration) were used for the present 

investigation. The compounds 12n, 12p and 12au were omitted from the QSAR set due to their 

improper activity. The biological activities, IC50, were transformed into pIC50= [-Log IC50] 

(Table 1) and used as dependent variable for 3D-QSAR model generation. The dataset consists 

of both active and inactive molecules, and the dataset was divided into training and test set using 

the „„Automated Random Selection‟‟ option present in the PHASE software. The total set of 

inhibitors was divided randomly into a training set (35 compounds) for generation of 3D QSAR 

models and a test set (19 compounds) for validation of the developed model. The partitioning 

was so selected that there should be both active and inactive ligands in each test as well as 

training set. The dataset was then used for generating common pharmacophore hypotheses and 

subsequently for developing 3D-QSAR models (Tables 1). 

2.2. Computational details 

The 3D-QSAR pharmacophore model developing study was performed using the PHASE 3.4 

module of Schrodinger molecular modeling software.
13

 PHASE is a versatile product to identify 

common pharmacophore hypothesis, which is accompanied by a set of aligned conformations 

that suggests the relative manner in which the molecules are likely to bind to the receptor. A 

given hypothesis gives 3D-QSAR model to predict activity. The pharmacophore model was 
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developed using a set of pharmacophore features to generate sites for all the compounds. Each 

structure is represented by various chemical features that may make easy non-covalent binding 

among the ligand and its binding pocket.
14,15

 

LigPrep provides a structure cleaning step,
16

 which is incorporated into PHASE.
17

, PHASE 

provides two built-in approaches for the purposes of pharmacophore model development, both of 

which employ the MacroModel conformational search engine. Conformational analysis were 

performed using Monte- Carlo Multiple Minimum method implemented in the Schrodinger 

software.
13

 

The ligands were assigned as active (above 6.2) and inactive (below 5.7) by giving an 

appropriate activity threshold value. The activity threshold value was selected on the basis of 

dataset activity distribution (4.590–8.398) and the active ligands were chosen to derive a set of 

suitable pharmacophores. Common pharmacophore and QSAR model building were generated 

by prepared ligands. 

2.3. Scoring pharmacophores with respect to active and inactive ligands 

The resulting pharmacophores were then scored and ranked. The overall ranking of all the 

hypotheses based on scored hypothesis. The scoring algorithm included the contributions from 

the alignment of site points and vectors, volume overlap, selectivity, number of ligands matched, 

relative conformational energy, and activity. 

2.4. Perceiving common pharmacophores 

Common pharmacophores are examined by a scoring protocol to identify the pharmacophore 

from each surviving n-dimensional box that yields the best alignment of the active set ligands. 

The scoring protocol provides a ranking of different hypotheses to choose most appropriate for 

further investigation. Also the inactive molecules were scored in order to observe the alignment 

of these molecules with respect to the different pharmacophore hypotheses and to select the best 

ones. The larger is the difference between the score of active and inactives, the better is the 

hypothesis at discriminating the active from inactive molecules.  
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2.5. Building 3D-QSAR models 

3D-QSAR models represented by binary-valued occupation patterns that can be used as 

independent variables to create partial least-squares (PLS) factors. Statistics on the correlation of 

predicted with actual activity data were collated for the hypothesis. 

PHASE QSAR models may be either atom-based or pharmacophore- based, the difference being 

whether all atoms are taken into account, or merely the pharmacophore sites that can be matched 

to the hypothesis. Pharmacophore- based QSAR models were generated for hypothesis using a 

grid spacing of 1.0 Å and the 35-member training set. QSAR models were validated by 

predicting the activity of test set ligands containing one to four PLS factors.  

3. Results and Discussions 

3.1. Generation of 3D-QSAR models  

Different variant CPHs were generated by common pharmacophore identification process. All 

CPHs were examined and scored to identify the pharmacophore that yields the best alignment of 

the active compounds (pIC50> 6.2). All CPHs were validated by aligning and scoring the inactive 

compounds (pIC50< 5.7). We have selected top two CPHs models whose survival-inactive scores 

ranked in the top 1 % for alignment of all compounds and 3D-QSAR studies. The survival score 

for these CPHs is shown in Table 2. All top two CPHs were found to be associated with the five-

point hypotheses, which consists of one hydrogen bond acceptor (A), one hydrogen bond donor 

(D), one hydrophobic (H), and two aromatic rings (R) vector features. All compounds were 

aligned using CPH ADHRR.84 for 3D-QSAR study (Fig. 1) alignment of active compounds by 

using CPH ADHRR.651 was shown in Fig. 2. 

All top CPHs were used for atom-based 3D-QSAR model generation. The CPH ADHRR.84 

yielded a 3D-QSAR model with good value of regression coefficient, low standard deviation, 

and high variance ratio with good stability, but showed diminished predictive power along with 

high RMSE value and low Pearson R value which stand for correlation between predicted and 

observed activity for test set. The CPHs ADHRR.84 and ADHRR.651 yielded 3D-QSAR models 

with good PLS statistical values. Both these hypotheses showed good internal as well as external 

predictive power (Table 3 & 4). The training set correlation in both CPHs is characterized by 

PLS factors (R
2
 = 0.9612, SD = 0.1705, F = 185.9, P = 1.043e-020, Q

2
 = 0.7949 for CPH 
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ADHRR.84 and R
2
 = 0.9727, SD = 0.1431, F = 266.8, P = 5.552e-023, Q

2
 = 0.8051 for CPH 

ADHRR.651).  

We have selected the 3D-QSAR models generated by CPHs ADHRR.84 and ADHRR.651 for 

correlating the structure with activity. Graph of observed versus predicted biological activity of 

training and test sets are shown in Figs. 3 and 4, respectively. Residuals values obtained by 

subtraction of predicted activities from observed biological activities are near to zero which 

indicated that error in prediction of biological activity is low and predicting ability of QSAR 

models developed by CPHs ADHRR.84 and ADHRR.651 is good (Table 5). Mean of residual in 

predicting the activity of compounds was calculated by average of summation of all residual 

values. 3D-QSAR models associated with hypotheses ADHRR.84 and ADHRR.651 showed 

0.1828 and 0.1554, respectively, as the mean of residual which also support the predictability of 

both QSAR models. The pharmacophore hypothesis showing distance between pharmacophoric 

sites is depicted in Fig. 5. 

Based on overall statistical results, 3D-QSAR model developed using CPHs ADHRR.84 and 

ADHRR.651 was applied to each compound in the series for the establishment of structure–

activity correlation. A pictorial representation of the cubes generated in the present 3D-QSAR 

along with most active and inactive compounds is shown in Figs. 6 and 7. In these generated 

cubes, the blue cubes indicate favorable features, while red cubes indicate unfavorable features 

for biological activity. The blue cubes around the hydrogen bond acceptor and hydrogen bond 

donor group of thiophene ring suggest the importance of core ring for activity. 

3.2. SAR analysis by visualization of regression coefficients 

Phase allows us to visualize effects due to each pharmacophoric feature and the positive and 

negative regression coefficients associated with the effect, like H-bond donor effects, 

hydrophobic effects, negative ionic effects, positive ionic effects and electron-withdrawing 

effects. 3D-QSAR model visualization in Phase depends on the module used. In the grid-based 

3D-QSAR method used here, visualization of the model is referred to as “regression coefficient 

visualization” or “effects” from atom or pharmacophore types. In field-based QSAR methods, 

the results are represented by field “contours”. In this study we looked at effects of each 

pharmacophoric feature – H-bond donor, hydrophobic, negative ion and positive ion – with their 

positive and negative regression coefficients around the pharmacophore hypothesis to visualize 
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the favorable and unfavorable regions. In all analyses, positive coefficients and negative 

coefficients are shown as blue-colored and red-colored cubes, respectively. 

3.2.1. Analysis of hydrogen bond donor effects 

Ligand-receptor interactions inferred by the 3D-QSAR analysis can be visualized as color-coded 

cubes in the space around the ligand, for each of the properties considered. For the convenience 

and ease of viewing, the hydrogen-bond donor effects are visualized at a positive regression 

coefficient threshold of 0.008 and a negative regression coefficient threshold of −0.008. The 

presence of hydroxyl group on 3
rd

 position (blue-colored region) in the active compound 12ad 

acts as a hydrogen bond donor and that might be a reason for high activity of the compound, 

whereas absence of hydrogen bond donor group at same position leads to decrease in activity of 

inactive compounds 12ag and 12ao. 

3.2.2. Analysis of hydrophobic effects 

Hydrophobic effects are visualized at a positive and a negative regression coefficient threshold 

of 0.040 and −0.040, respectively. Blue colored cubes at thiophene ring in compound 12az 

indicate the importance of hydrophobic groups at that position and the absence of hydrophobic 

groups at this position might lead to a decrease in activity. Addition of various hydrophobic 

groups at 3
rd

 and 4
th
 position (red-color) of substituted benzene ring results in decrease in activity 

of compounds can be observed by considering 12a (5.9), 12ae (5.7), 12ai (5.5) and 12as (5.4). 

Active compound that gives rise to strong and positive hydrophobic effects are shown in Fig. 6a 

and 7a.  

4. Conclusion 

Computational methods have become increasingly important in a number of areas such as 

comparative or homology modelling, functional site location, characterization of ligand-binding 

sites in proteins, docking of small molecules into protein binding sites, protein-protein docking, 

and molecular dynamics simulations. The results obtained yield information that sometimes is 

beyond current experimental possibilities and can be used to guide and improve a vast array of 

experiments. On the basis of our improved level of understanding of molecular recognition and 

the widespread availability of target structures, it is reasonable to assume that computational 
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methods will continue aiding not only in the design and interpretation of hypothesis-driven 

experiments in the field of cancer research but also in the rapid generation of new hypotheses. 

The two 3D-QSAR models were developed using variant CPHs which consist of one acceptor, 

one donor, one hydrophobic, and two rings vector feature. This 3D-QSAR model gives a 

hypothetical image for designing of new potential compounds. The overall study provides 

detailed structure and important binding information of pyrimidine derivatives as TAK1 

inhibitors for anticancer activity. 
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Figure citation 

 

Figure 1: Alignment of all compounds using the 5-point pharmacophore hypothesis CPH 

ADHRR.84 
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Figure 2: Alignment of active compounds using the 5-point pharmacophore hypothesis CPH 

ADHRR.651 

a)       b)  

Figure 3: Plot of experimental versus predicted pIC50 values of compounds for the 3D-QSAR 

model CPH ADHRR.84 a) Training set & b) Test set  
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a)    b)  

Figure 4: Plot of experimental versus predicted pIC50 values of compounds for the 3D-QSAR 

model CPH ADHRR.651 a) Training set & b) Test set 

 

Figure 5: The 5-point pharmacophore hypothesis that gave the best 3D-QSAR model; Green 

represents hydrophobic feature, cyan represents hydrogen-bond donor and brown-colored ring 

represents a ring aromatic; All the inter-feature distances are in Angstrom (Å). 
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a)  

b)  

Figure 6: Pictorial representation of the cubes generated using the QSAR model developed 

using CPH ADDHR.84 for a) most active compound 12az and b) least active compound 12ao. 
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Blue cubes indicate favorable regions, while red cubes indicate unfavorable region for the 

activity. 

a)  

b)  

Figure 7: Pictorial representation of the cubes generated using the QSAR model developed 

using CPH ADDHR.84 for a) most active compound 12az and b) least active compound 12ao. 
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Table 1: Structure of compounds used for development of common pharmacophore hypothesis 

and 3D-QSAR studies along with biological activity 

 

Compound 

ID 
R IC50 (µM) pIC50 Pharm Set QSAR Set 

12a 
 

1.1 5.959 - test 

12b 

 

0.71 6.149 - test 

12c 

 

0.80 6.097 - training 

12d 

 

0.46 6.337 active training 

12e 

 

0.65 6.187 - test 

12f 

 

1.2 5.920 - training 

12g 

 

2.1 5.678 inactive test 

12h 

 

0.48 6.319 active training 

12i 

 

0.13 6.886 active training 

12j 

 

1.6 5.796 - training 

12k 
 

1.2 5.921 - test 
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12l 

 

0.88 6.055 - test 

12m H 0.43 6.366 active training 

12n* 2-SMe >30 <4.523 - NA 

12o 2-CN 0.56 6.2518 active test 

12p* 2-CF3 >30 <4.523 - NA 

12q 2-COMe 5.4 5.268 inactive training 

12r 2-CONH2 6.0 5.229 inactive training 

12s 2-CH2OH 0.75 6.125 - test 

12t 2-CH2OMe 1.4 5.854 - training 

12u 2-CH2CN 0.25 6.602 active training 

12v 3-SMe 4.3 5.366 inactive test 

12w 3-SO2Me 4.9 5.310 inactive training 

12x 3-SO2NH2 1.8 5.745 - test 

12y 3-SO2NMe2 1.4 5.854 - test 

12z 3-NO2 0.089 7.051 active test 

12aa 3-NH2 0.77 6.113 - training 

12ab 3-NMe2 2.4 5.620 inactive test 

12ac 3-NHCOMe 3.2 5.495 inactive training 

12ad 3-OH 0.061 7.215 active training 

12ae 3-OMe 1.8 5.745 - training 

12af 3-O(CH2)2OMe 3.2 5.495 inactive training 

12ag 3-OCF3 3.5 5.456 inactive training 

12ah 3-CN 0.25 6.602 active training 

12ai 3-CF3 2.8 5.553 inactive test 

12aj 3-COMe 2.8 5.553 inactive training 

12ak 3-CONH2 0.53 6.276 active training 

12al 3-CH2NH2 0.79 6.102 - test 

12am 3-CH2OH 0.85 6.070 - training 
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12an 4-SMe 17.5 4.757 inactive training 

12ao 4-SO2Me 25.7 4.590 inactive training 

12ap 4-NH2 1.8 5.745 - test 

12aq 4-NHSO2Me 4.9 5.310 inactive training 

12ar 4-OH 0.27 6.569 active training 

12as 4-OCF3 3.5 5.456 inactive test 

12at 4-CN 2.5 5.602 inactive training 

12au* 4-CONMe2 >30 <4.523 - NA 

12av 4-CH2OH 2.8 5.553 inactive training 

12aw 4-CH2CN 1.5 5.824 - training 

12ax 

 

0.023 7.638 active training 

12ay 

 

0.013 7.886 active test 

12az 

 

0.004 8.398 active training 

12ba 

 

0.030 7.523 active test 

12bb 

 

0.018 7.745 active training 

12bc 

 

1.0 6.000 - training 

12bd 

 

0.34 6.468 active training 

12be 

 

1.4 5.854 - training 

 

*omitted from QSAR analysis 
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Table 2: Score of different parameters of the hypothesis ADHRR-84 and ADHRR-651 

 

Sr. No. Parameter 
Score 

ADHRR-84 ADHRR-651 

1.  Survival 3.880 3.864 

2.  Survival-inactive 1.041 1.056 

3.  Post hoc 5.860 5.844 

4.  Site 0.97 0.95 

5.  Vector 1.000 0.999 

6.  Volume 0.908 0.911 

7.  Selectivity 1.869 1.971 

8.  Matches 17 17 

9.  Energy 0.00 17 

10.  Activity 6.602 6.602 

11.  Inactive 2.838 2.808 
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Table 3: 3D-QSAR statistical parameters for ADHRR-84 hypothesis 

PLS factors SD r
2
 F P RMSE q

2
 Pearson-R 

1 0.4993 0.6342 57.2 1.059e-008 0.4367 0.5568 0.7895 

2 0.3043 0.8682 105.4 8.297e-015 0.4071 0.6146 0.8027 

3 0.2168 0.9352 149.1 1.679e-018 0.3423 0.7276 0.8684 

4 0.1705 0.9612 185.9 1.043e-020 0.297 0.7949 0.9093 

Bold font signifies the best hypothesis 

 

 

 

 

 

 

 

Table 4: 3D-QSAR statistical parameters for ADHRR-651 hypothesis 

PLS factors SD r
2
 F P RMSE q

2
 Pearson-R 

1 0.5489 0.5578 41.6 2.569e-007 0.4776 0.4697 0.7878 

2 0.3230 0.8515 91.8 5.566e-014 0.3918 0.6431 0.8247 

3 0.2004 0.9446 176.3 1.463e-019 0.3436 0.7256 0.8884 

4 0.1431 0.9727 266.8 5.552e-023 0.2895 0.8051 0.9258 

Bold font signifies the best hypothesis 
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Table 5: Comparison of observed biological activity and predicted activity along with fitness of 

compounds on CPHs 

Compound 

ID 

Observed 

activity 

ADHRR-84 ADHRR-651 

Predicted 

activity 
Residual 

Fitness 

score 

Predicted 

activity 
Residual 

Fitness 

score 

12a 5.959 6.07 -0.111 2.95 6.07 -0.111 2.95 

12b 6.149 6.35 -0.201 2.95 6.33 -0.181 2.95 

12c 6.097 6.27 -0.173 2.93 6.26 -0.163 2.93 

12d 6.337 6.09 0.247 2.87 6.10 0.237 2.86 

12e 6.187 5.81 0.377 2.87 5.89 0.297 2.87 

12f 5.920 6.01 -0.090 2.85 5.99 -0.070 2.85 

12g 5.678 6.00 -0.322 2.81 6.11 -0.432 2.80 

12h 6.319 6.32 -0.001 2.89 6.36 -0.041 2.89 

12i 6.886 6.48 0.406 2.89 6.56 0.326 2.89 

12j 5.796 6.12 -0.324 2.87 6.02 -0.224 2.87 

12k 5.921 6.34 -0.419 2.85 6.32 -0.339 2.85 

12l 6.055 6.42 -0.365 2.89 6.46 -0.405 2.89 

12m 6.366 6.35 0.016 2.83 6.39 -0.024 2.83 

12o 6.252 6.36 -0.108 2.76 6.48 -0.228 2.63 

12q 5.268 5.37 -0.102 2.81 5.32 -0.052 2.81 

12r 5.222 5.08 0.142 2.82 5.27 -0.048 2.82 

12s 6.125 6.04 0.085 2.85 6.00 0.125 2.85 

12t 5.854 5.85 0.004 2.82 5.90 -0.046 2.82 

12u 6.602 6.43 0.172 2.77 6.64 -0.038 2.77 

12v 5.366 5.58 -0.214 2.97 5.63 -0.264 2.97 

12w 5.310 5.23 0.08 2.90 5.12 0.190 2.89 

12x 5.745 6.19 -0.445 2.92 6.15 -0.405 2.91 

12y 5.854 5.72 0.134 2.91 5.77 0.084 2.91 

12z 7.051 6.57 0.481 2.96 6.64 0.411 2.96 

12aa 6.123 6.39 -0.267 2.92 6.34 -0.217 2.91 

 


