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ABSTRACT 

 

In this study the fungicidal activity, expressed as relative inhibition rate, was correlated with 

trifluoromethyl-1,2,4-triazole derivative descriptors by the Partial Least Squares (PLS) method. For 

a data set containing 18 structures, previously modeled by the RM1 semiempirical quantum 

chemical method, various electronic and 0D, 1D, 2D and 3D descriptors were calculated. The test 

set includes five out of the eighteen Mannich bases containing trifluoromethyl-1,2,4-triazoles. The 

resultant two-components PLS model had acceptable statistical quality (R2X(Cum) = 0.805, 

R2Y(cum) = 0.823 and Q2(Cum) = 0.735) for predicting the fungicidal activity of the 1,2,4-triazole 

derivatives. Specific 1,2,4-triazole structural features supplying information about interatomic 

distances, topological distances, types of atoms and which encode chemical information influence 

the fungicidal activity.  
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INTRODUCTION 

1,2,4-triazole and its derivatives represent a versatile class of biologically active compounds, 

possessing a wide spectrum of activities, including anti-inflammatory, antiviral, analgesic, 

antimicrobial, anticonvulsant, anticancer, antioxidant, antitumoral and antidepressant activity [1]. 

Furthermore, some of the complexes containing 1,2,4-triazole ligands have rather peculiar 

structures and specific magnetic properties. 

The 1, 2, 4-triazole nucleus has been incorporated into a wide variety of therapeutically 

interesting drug candidates [2]. Some of the modern day drugs having fused heterocycles with a 

triazole moiety are alprazolam, triazolam, estazolam (hypnotic, sedative, tranquilizer), trazodone 
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(antidepressant, anxiolytic), trapidil (hypotensive), terconazole (antifungal), hexaconazole 

(antifungal), etizolam (amnesic, anxiolytic, anticonvulsant, hypnotic, sedative and skeletal muscle 

relaxant), rilmazafon (hypnotic, anxiolytic) and rizatriptan (antimigrane agent). 

Mannich bases, especially candidates with morpholine, 4-benzylpiperazine, N-

methylpiperidine and trifluoromethylphenylpiperazine in the aminomethyl group, have very good 

antibacterial activity [3, 4]. 

Triazoles are used in the control of a variety of fungal diseases in fruits, vegetables, legumes 

and grain crops, both as pre- and postharvest applications [5]. The biochemical mechanism of their 

antifungal effect is based on the inhibition of ergosterol biosynthesis thereby interfering with fungal 

cell-wall formation. They also inhibit sterol 14α–demethylase and hence considered steroid 

demethylation inhibitor. 3- amino-1,2,4-triazole is an inhibitor of mitochondrial and chloroplast 

function. Commercial grade 3-amino-1,2,4-triazole is used as a herbicide and cotton defoliant. The 

triazole derivatives such as, S-3307, S-3308, triadimefon and paclobutrazol are recommended for 

use both as fungicides and plant growth regulators. 

Molecules containing thiazole ring systems have low toxicity and very good biological 

activity [6].  

A series of trifluoromethyl-substituted 1,2,4-triazole Mannich bases containing substituted 

benzylpiperazine ring with herbicidal and fungicidal activity have been synthesized [7] (Table 1).  

This paper presents a quantitative structure-activity relationships study for this series of 1-

[(4-substituted-benzylpiperazin-1-yl)methyl]-4-(substituted)benzylideneamino-3-trifluoromethyl-

1H-1,2,4-triazole-5(4H)-thiones, which were previously  modeled [8] using the RM1 semiempirical 

molecular orbital method [9]. Descriptors calculated for the optimized structures were related to the 

mycelial growth inhibition activity against the Fusarium oxysporum f. sp. cucumerinum fungi test 

[7] using the partial least squares (PLS) approach. 

 

METHODS 

 

Definition of target property and molecular structures 

A series of 18 Mannich bases having trifluoromethyl-substituted 1,2,4-triazole containing 

substituted benzylpiperazine ring (Table 1) was used, having the fungicidal Fusarium oxysporum f. 

sp. Cucumerinum relative inhibition rate (RIR, expressed in %) as dependent variable.  
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Table 1. Mannich bases structures including trifluoromethyl-substituted 1,2,4-triazoles, Fusarium 

oxysporum f. sp. Cucumerinum experimental relative inhibition rate (RIR) and descriptors used in 

the final PLS model* 

 
No Structure RIR F10[C-F] Mor26e R7e+ RDF020e RDF020p RDF020u RDF020v 

1 
 

0.101 3.00 -0.39 0.02 5.04 1.35 4.48 1.15 

2 
 

0.804 6.00 0.00 0.02 8.74 1.71 7.31 1.49 

3 
 

0.187 3.00 -0.43 0.02 4.60 1.17 4.02 1.01 

4 
 

0 3.00 -0.46 0.02 4.94 1.21 4.21 1.06 

5 
 

0 3.00 -0.57 0.02 4.47 1.13 3.89 0.98 

6 
 

0.402 5.00 -0.24 0.02 4.27 1.05 3.68 0.91 

7 
 

0.509 3.00 -0.24 0.02 6.53 1.40 5.53 1.22 

8 
 

0.719 6.00 -0.49 0.02 8.41 1.58 6.97 1.38 

9 
 

0.604 5.00 -0.20 0.03 4.89 1.29 4.32 1.10 

10 
 

0.401 3.00 -0.11 0.02 6.70 1.47 5.71 1.27 

11 N

N N
N

N

N

FF

F

S

Cl

Cl 
0.303 3.00 -0.53 0.02 5.56 1.35 4.86 1.17 

12 
 

0.502 3.00 -0.30 0.02 5.71 1.34 4.86 1.18 

13 
 

0.708 3.00 -0.29 0.02 8.09 1.81 7.00 1.57 

14 
 

0.826 6.00 0.07 0.03 9.84 1.97 8.33 1.71 



 4

15 
 

0.504 3.00 -0.34 0.03 5.68 1.42 5.00 1.23 

16 

 

0.705 3.00 0.05 0.02 6.28 1.55 5.46 1.35 

17 
 

0.607 3.00 -0.10 0.03 5.83 1.47 5.16 1.27 

18 
 

0.608 5.00 -0.35 0.03 5.75 1.41 5.03 1.22 

* F10[C-F] represents the frequency of C-F at topological distance 10 (2D frequency fingerprints 
descriptor), Mor26e – the 3D-MoRSE - signal 26 / weighted by atomic Sanderson 
electronegativities (3D-MoRSE descriptor), R7e+ - the R maximal autocorrelation of lag 7 / 
weighted by atomic Sanderson electronegativities (GETAWAY descriptor), RDF020e – the Radial 
Distribution Function - 2.0 / weighted by atomic Sanderson electronegativities (Radial Distribution 
Function descriptor), RDF020p – the Radial Distribution Function - 2.0 / weighted by atomic 
polarizabilities (Radial Distribution Function descriptor), RDF020u – the Radial Distribution 
Function - 2.0 / unweighted (Radial Distribution Function descriptor), RDF020v – the Radial 
Distribution Function - 2.0 / weighted by atomic van der Waals volumes (Radial Distribution 
Function descriptor). 
 

The title fungicides were previously energy optimized [8] by the RM1 semiempirical 

quantum chemical approach, performed using semiempirical NDDO module of the Schrödinger 

software (Schrödinger, LLC, New York, NY, 2008). Following quantum chemical descriptors were 

derived for the energy optimized structures: electronegativity, hardness, chemical potential, 

electrophilicity, HOMO and LUMO molecular orbital energies, heat of formation, dipole moment, 

molecular surface area, softness, maximum average local ionization energy on the molecular 

surface, minimum average local ionization energy on the molecular surface, mean average local 

ionization energy on the molecular surface, maximum electrostatic potential on the molecular 

surface, minimum electrostatic potential on the molecular, mean electrostatic potential on the 

molecular surface, electrophilic superdelocalizability, nucleophilic superdelocalizability, radical 

superdelocalizability, atom self polarizability. 

Structural 0D, 1D, 2D and 3D descriptors were calculated for the lowest energy structures 

using the DRAGON (Dragon Professional 5.5 (2007), Talete S.R.L., Milano, Italy), InstantJchem 

(which was used for structure database management, search and prediction) (InstantJchem 15.7.27, 

2015, ChemAxon (http://www.chemaxon.com) and ChemProp (UFZ Department of Ecological 

Chemistry 2014. ChemProp 6.2, http://www.ufz.de/index.php?en=6738) software. Structural 0D, 
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1D, 2D and 3D descriptors in conjunction with the electronic parameters were used for QSAR 

models development. 

 

The Partial Least Squares (PLS) method  

Projections to Latent Structures (PLS) represent a regression technique for modeling the 

relationship between projections of dependent factors and independent responses. PLS (Partial 

Least Squares) regression is a statistical modeling technique with data analysis features linking a 

block (or a column) of response variables to a block of explanatory variables [10]. The PLS 

approach leads to stable, correct and highly predictive models even for correlated descriptors [11]. 

This method describes the X matrix of chemical descriptors of the training set (N 

compounds) defining a number of F significant principal components (PC), i.e. tif columns formed 

by equations (1), when i = 1, ..., N. 

∑
=

+⋅+=
F

1f
ikiffkkik etpxx         (1) 

where kx denotes the mean of variable k, pfk the loading of variable k in dimension (factor) f, and 

eik the residuals [12]. The consecutive orthogonal latent variables (tf) are deduced assuring maximal 

covariance of them with y. The linear PLS inner relation is described by equation (2): 

∑
=

+⋅+=
F

1f
iiffi etbyy          (2) 

where y  represents the average of the y-variable and bf the regression coefficients. These can be 

transformed to express the biological activity y as a function of the original xk descriptors. 

 PLS calculations were performed by the SIMCA package (SIMCA P+ 12.0.0.0, May 20 

2008, Umetrics, Sweeden, http://www.umetrics.com/). 

 

Model validation 

The data over fitting and model applicability was controlled by comparing the root-mean-square 

errors (RMSE) and the mean absolute error (MAE) [13] of the training and validation sets. 

For internal validation results several measures of robustness were employed: Y-scrambling 

[14] and Q2 (leave-seven-out) cross-validation coefficient.  

To test the robustness and predictive power of the model the concordance correlation 

coefficient (CCC) [15] (having the thresholds values higher than 0.85, as they have been rigorously 

determined by a simulation study [16]).  
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In addition, to test the predictive power of the model, the predictive r2 ( 2
predr ) test [17] was 

employed. It is considered that for a predictive QSAR model, the value of 2
predr  should be higher 

than 0.5. 

 

RESULTS AND DISCUSSION 

The series of 18 trifluoromethyl-1,2,4-triazole derivatives was previously modeled [8] by the RM1 

semiempirical molecular orbital approach and further used to calculate structural descriptors. The 

trifluoromethyl-1,2,4-triazole derivative structures and the descriptors used in the final PLS model 

are presented in Table 1. 

A PCA model was built for the entire X matrix (including N = 18 compounds and X = 1494 

descriptors). From five significant principal components resulting from this analysis, the first three 

components already explained 65.7 % of the information content of the descriptor matrix. 

PLS calculations were performed to correlate the RIR values with all the calculated 

descriptors. From the entire set of trifluoromethyl-1,2,4-triazole derivative, a training set of 13 

compounds and a random test set of 5 compounds: no. 4, 8, 11, 14, 16 (Table 1) were considered.  

The PLS model was constructed using the training set and an acceptable PLS model with 2 

principal components was obtained: R2X(Cum) = 0.805, R2Y(cum) = 0.823, Q2(Cum) = 0.735, 

where R2Y(CUM) are the cumulative sum of squares of the entire Y’s explained by all extracted 

principal components and Q2(CUM) is the fraction of the total variation of the Y’s that can be 

predicted for all the extracted principal components.  

From the entire descriptor matrix following descriptor types were included in the final PLS 

model: 2D frequency fingerprints, 3D-MoRSE, GETAWAY and Radial Distribution Function, 

which were found to be significant for the model (Table 1). The score and loading plots are 

presented in Figures 1 and 2. 
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Figure 1. Score scatter plot of the final PLS model 
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Figure 2. Loading scatter plot of the final PLS model. 

 

The loading scatter plot confirms that the first component is dominated by the 3D-MoRSE 

and RDF descriptors and the GETAWAY and 2D-frequency fingerprint descriptors are dominant 

for the second component. 

  The importance of a given x variable for the Y matrix is proportional to its distance from the 

origin in the loading space. These lengths correspond to the PLS regression coefficients after F = 2 

dimensions. The importance of descriptors was evaluated by the VIP (Variable Influence on 

Projection) values [18], which summarizes the importance of the x variables for both Y and X 

matrices in the model. This is a weighted sum of squares of the PLS-weights, with the weights 
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calculated from the amount of Y variance of each PLS component. The noise variables (variable 

coefficient values close to 0) were excluded to reduce the model over fit. The PLS coefficients and 

VIP plots are presented in Figures 3 and 4. 

 
 

 
Figure 3. PLS regression coefficients plot of the two-components PLS model. The bars indicate 

95% confidence intervals based on jack-knifing. 

 

 
Figure 4. VIP plot of the x-variables of the two-component PLS model. 
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Y-randomization test and leave-seven-out crossvalidation runs were performed to check the 

robustness and internal predictive ability of the PLS models. The risk of chance correlation was 

verified by the Y-scrambling procedure, which was repeated 999 times. The extremely low 

calculated scrambled R2 (0.158) and Q2 (-0.346) values indicate no chance correlation for the 

chosen model. The Y-scrambling plot is presented in Figure 5. 

 
Figure 5. Y-randomization results for the final PLS model. The x-axis reports the 

correlation coefficient between original and permuted response data, while on the y-axis R2 (black 

triangles) and Q2 (black squares) values for the 999 randomized models are reported. 

 

The data over fitting and model applicability was controlled by comparing the root-mean-

square errors (RMSE) and the mean absolute error (MAE) [13] calculated for the training (RMSEtr 

= 0.096, MAEtr = 0.079) and validation (RMSEext = 0.178, MAEext = 0.140) sets.  

The leave-seven-out crossvalidation results highlights that the model is stable, not obtained 

by chance: the difference between R2Y(cum) and Q2(cum)
 
is small: 8.8 % and the calculated RMSE 

and MAE values indicate an internally predictive model. 

The calculated concordance correlation coefficient values for the training (CCCtr = 0.903), 

crossvalidation (CCCL7O = 0.832) and test (CCCext = 0.853) sets indicate a robust model with 

predictive power, which was confirmed by the 2
predr  value of 0.681 too. 

The PLS model is satisfactory in the fitting and has predictive power. The dependence 

between the experimental and predicted RIR values is presented in Figure 6. 
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Figure 6. Experimental versus predicted RIR values obtained by the PLS model. 

 

The Table 1, Figures 3 and 4 describe seven descriptors as the most relevant variables for 

the present set of 1,2,4-triazoles which influence the fungicidal activity. Regarding the selected 

descriptors used to build the PLS model, some considerations can be pointed out: 

GETAWAY (Geometry, Topology, and Atom-Weights AssemblY, descriptor R7e+ in this 

case) are geometrical descriptors which encode geometrical and topological information on the 

effective position of substituents and fragments in the molecular space [19]. They are independent 

of molecule alignment and account also for information on molecular size and shape as well as for 

specific atomic properties. Thereby, R7e+ is weighted by Sanderson electronegativities with 

positive contribution to the model (Table 2). 

The 3D-MoRSE (3D-Molecule Representation of Structures based on Electron diffraction, 

descriptor Mor26e in this case) descriptors afford the possibility for choosing an appropriate atomic 

property [20]. They present the advantage that they code with fixed-length representation of 3D 

molecular structure, allowing the comparison of data sets comprising molecules of different size, 

and number of atoms. 

 The RDF (radial distribution function, descriptors RDF020e, RDF020p, RDF020u and 

RDF020v in this case) descriptors are calculated from the molecular geometry, representing the 

molecular conformation in 3D with a series of weighting schema, including weighted by atomic 

masses, atomic van der Waals volumes, atomic Sanderson electronegativities and atomic 

polarizabilities. These descriptors are based on the geometrical interatomic distance and constitute a 

radial distribution function code [21]. These atomic properties enable the discrimination of the 

atoms of a molecule for almost any property that can be attributed to an atom. All RDF descriptors 
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had a positive influence on the studied property, generally increasing the fungicidal activity of 

1,2,4-triazole analogues. 

Most frequently used in drug research are structural keys and hashed fingerprints (F10[C-F], 

in the present case) [22]. The former make use of a predefined fragment dictionary and record the 

presence or absence of a number of small generic or specific fragments, whereas hashed 

fingerprints allow to reduce the length of the bitstring. In fact, a ‘molecular fingerprint’ is a binary 

bitstring of 1’s (for the presence) and 0’s (for the absence) of specific fragments and the use of hash 

functions allows to break the fingerprint into smaller strings, easier to handle. The main advantage 

of the 2D-descriptors is the speed of their calculation, but their meaning is more difficult to be 

interpreted. Atomic, atom-type and total non-stochastic quadratic indices have shown a great ability 

to encode chemical information, which can be used for the development of QSARs [23]. The 

frequency (F10[C-F]) of fragments that have electron negative atom at a topological distance of ten 

bonds display major positive contributions to the final PLS model, also highlights the role of 

electrostatic interactions for 1,2,4-triazole activity. 

In the final PLS model the selected molecular descriptors capture 3D information (3D-

Morse, GETAWAY, RDF), supplying information about interatomic distances, topological 

distances, types of atoms and which encode chemical information (2D-frequency fingerprints). 

 

CONCLUSIONS 

The fungicidal activity of Mannich bases containing trifluoromethyl-1,2,4-triazole, in terms of 

relative inhibition rate, was correlated with structural descriptors by the Partial Least Squares (PLS) 

method. The title compounds were previously modeled by quantum mechanics and 0D, 1D, 2D and 

3D descriptors were derived from the optimized structures. An acceptable PLS model with 

predictive power was obtained. The fungicidal activity can be raised by molecular conformation in 

3D descriptors weighted by atomic van der Waals volumes, atomic Sanderson electronegativities 

and atomic polarizabilities, geometrical descriptors referring to the effective position of substituents 

and fragments in the molecular space. 
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