

1st International Electronic Conference on Medicinal Chemistry

2-27 November 2015 chaired by Dr. Jean Jacques Vanden Eynde

Liolios C.¹, Schäfer M.¹, Bauder-Wüst U.¹, Haberkorn U.², Eder M.¹, Kopka K.¹

¹ Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany.² Clinical Cooperation Unit Nuclear Medicine, University of Heidelberg, Heidelberg, Germany.

* Corresponding author: c.liolios@dkfz-heidelberg.de

sponsored by

pharmaceuticals

A novel class of bispecific PSMA/GRPR targeting radioligands with optimized pharmacokinetics for improved PET imaging of prostate cancer

Graphical Abstract

Abstract: A series of novel low-molecular weight bispecific radioligands were developed, which were able to target the prostate-specific membrane antigen (PSMA) and the gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells. These bispecific radiotracers combined the peptidomimetic urea-based pseudo-irreversible inhibitor of PSMA: Glu-ureido-Lys with the bombesin (BN) analogue: H_2N-PEG_2 -[D-Tyr⁶, β -Ala¹¹, Thi¹³, Nle¹⁴]BN(6–14), which binds to GRPr with high affinity and specificity. The two pharmacophores were linked together through the chelating agent HBED-CC and spacers made of positively charged His (H) and negatively charged Glu (E): -(HE)_n-, (n=0-3) amino acids. The positron emitter ⁶⁸Ga ($t_{1/2}$ = 68 min, β^+ 88 %, E_{β_+} max. 1.9 MeV) was used for the radiolabelling of the bispecific radioligands and preliminary pharmacological data were collected from *in vitro* assays on prostate cancer cell lines (PC-3, AR42J, LNCaP) and in vivo experiments in normal and tumor bearing mice (biodistribution and small animal PET imaging studies). The new bispecific ligands in vitro showed binding affinities, which essentially matched the ones of the respective monomers, while *in vivo* they were able to target both PSMA (LNCaP) and GRPr (PC-3) positive tumors. In addition the charged -(HE)_n-, (n=1-3), linkers improved the tracer's pharmacokinetics by significantly reducing the normal organ uptake (i.e. kidney and spleen) and by increasing the tumor to-background ratio. In conclusion, the bispecific (PSMA and GRPr) targeting ligands, developed in this study could be considered as novel radiotracer candidates for more sensitive PET/CT-imaging of prostate cancer (PCa) in future clinical application.

Keywords: ⁶⁸Ga, PET-prostate cancer diagnosis, PSMA/ GRPr bispecific radioligands, low-molecular weight heterodimer

Introduction

• Prostate-specific membrane antigen (PSMA)

Membrane-bound protein overexpressed in 95-100% of human prostate cancer (PCa) cases.

Frequently PSMA (+) cases contain large areas with PSMA (-) cells !

• <u>Gastrin releasing peptide receptors (GRPrs)</u> Membrane-bound protein overexpressed in 84-100% PCa cases, including small cell lung and pancreatic cancers^{1,2}

GRPR +

Prostate cancer/ stromal cells

² Rybalov et al *Int.J.Mol.Sc. 2014*

Prostate cancer/ stromal cells ¹Mannweiler et al. *Pathol. Oncol. Res.* 2009

Aims of this study

Synthesis of *multimeric ligands* with binding affinity for both receptors GRPr/PSMA

HE spacers: incorporation of PK modification spacer

- **Comparison** with monomers
- **PK Improvement ->** high tumor/normal tissue contrast ratios without losing affinity and specificity.
- **Insight** for the design of new ۲ Radioligands in the future.
- **Selection** of the optimal tracer.

PSMA pharmacophore Glu-ureido-Lys

HE_n: Pharmacokinetic spacer His (H), Glu (E), (n = 0-3)

HBED-CC chelator for ⁶⁸Ga

GRPr Pharmacophore BN analogue H₂N-PEG₂-[D-Tyr⁶, β-Ala¹¹, Thi¹³, Nle¹⁴]BN(6–14)

Results and discussion

Results and discussion

Table 1. High-resolution mass spectrometry data of the free ligands [M+H] ⁺ .				
Compound	m/z calculated [M+H] ⁺	m/z experimen tal [M+H]+		
GRPr _m	1800.0	1800.8		
PSMA-11	947.4	947.4		
ΗE ₀	2101.3	2100.5		
HE1	2547.8	2547.3		
ΗE ₂	2814.1	2814.0		
ΗE ₃	3080.3	3080.3		

⁶⁸Ga-Radiolabeling

Comparative RP-HPLC analysis studies of the ligands HE_n , n=0-3, after labelling with ⁶⁸Ga (gamma-trace).

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

sponsors:

pharmaceuticals

Competition binding assay for GRP on PC-3 cells (10⁶), AR42J (10⁶) and PSMA on LNCaP cells (10⁶).

	compound	IC ₅₀ (nM) ± Std.Er	ANOVA vs monomer
PC-3	GRPrm	3.65 ± 1.11	-
	HEo	7.72 ± 1.20	NS*
	HE ₁	7.28 ± 1.17	NS
	HE ₂	4.40 ± 1.29	NS
	HE ₃	7.09 ± 1.23	NS
AR42J	GRPr _m	1.29 ± 1.23	-
	HEo	3.33 ± 1.17	**
	HE ₁	2.58 ± 1.15	*
	HE ₂	5.06 ± 1.20	****
	HE ₃	3.68 ± 1.17	***
LNCaP	PSMA-11	7.5 ± 1.29	-
	HEo	25.4 ± 1.09	**
	HE ₁	17.4 ± 1.07	*
	ΗE ₂	25.2 ± 1.23	**
	HE3	42.4 ± 1.09	****

 $^{[\bullet]}$ NS: not statistically significant difference. Significant differences against the monomers GRPr_m and PSMA-11 in each assay are presented with stars (P<0.05)

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

sponsors:

Total cell related radioactivity over time for 68 Ga-labelled versions of monomers PSMA-11 and GRPr_m and heterodimers **HE**_n, n=0-3 (30 nM) on LNCaP and PC-3 cells.

(Non-specific binding was determined by adding a blocking solution of 2-PMPA or native BN, x 1000-fold concentration as compared with the respective radioligand, 30 μ M).

Biodistribution studies (1 h p.i.) between $^{68}\text{Ga-HE}_0$ and $^{68}\text{Ga-PSMA-11}$ and $^{68}\text{Ga-GRPr}_m$ in mice.

Results are expressed as percentage of the injected dose per g (% ID/g) for each organ or tissue. Blocking experiments: co-injecting native BN (1 μ L of a 100 mM solution) or 2-PMPA (15 μ L of a 100 mM solution) along with the radiolabelled ligand.

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

sponsors: MDPI pharmaceuticals

Biodistribution studies in mice between the 68 Ga-HE₀ and 68 Ga-HE₁

Results are expressed as % ID/g (mean \pm SD, n=3-4). Significant differences are presented with stars above the bars that were compared (P<0.05).

Biodistribution studies mice between the ⁶⁸Ga-HE₀ and ⁶⁸Ga-HE₂

Results are expressed as % ID/g (mean \pm SD, n=3-4). Significant differences are presented with stars above the bars that were compared (P<0.05).

Biodistribution studies in mice between the ⁶⁸Ga-HE₀ and ⁶⁸Ga-HE₂

Results are expressed as % ID/g (mean \pm SD, n=3-4). Significant differences are presented with stars above the bars that were compared (P<0.05).

Tumor uptake determined from biodistribution studies (30, 60 min p.i.) in balb/c nu/nu mice bearing: (a) LNCaP and (b) PC-3 tumors, after i.v. administration of the ⁶⁸Ga-PSMA-11, ⁶⁸Ga-GRPr_m and heterodimers HE_n (n=0-3).

Significant differences are presented with stars above the bars that were compared (P<0.05). The values are expressed as % ID/g (mean \pm SD, n=3-4)

Whole-body µPET (axial, coronal, saggital, from top to bottom) images of male nu/nu mice bearing LNCaP tumor xenografts, for ⁶⁸Ga-HE₀

Where: T = Tumor; K= kidneys, B = bladder as indicated with arrows.

68Ga-HE2 0-20 min 20-40 min 120-140 min 40-60 min

Whole-body µPET (axial, coronal, saggital, from top to bottom) images of male nu/nu mice bearing LNCaP tumor xenografts, for ⁶⁸Ga-HE₂

Where: T = Tumor; K= kidneys, B = bladder as indicated with arrows.

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

Results and discussion – *in vivo*

Representative timeactivity curves taken from the dynamic PET measurements (0-60 min p.i.) expressed as SUV_{mean} (standardized uptake values) for ⁶⁸Galabelled **HE**₀ (top) and HE₂ (bottom). The SUV time-activity curves for the organs of interest are represented with the following letters, M = muscle, T = tumor, B = bladder, K = kidneys, L = liver.

Conclusion

- A series of novel bispecific radioligands (⁶⁸Ga-HE_n, n=0-3) were synthesized for the first time and evaluated for PSMA and GRPr targeting properties *in vitro* and *in vivo*.
- Both *in vitro* and *in vivo* studies showed that all low-molecular weight heterodimers under study (⁶⁸Ga-HE_n, n = 0-3) could efficiently target PSMA and GRPr on LNCaP and PC-3 prostate cancer cells and tumor xenografts.
- This dual-targeting heterodimer approach can improve the sensitivity of prostate cancer detection due to the synergistic increase of binding interactions for the chosen biological targets, i.e. PSMA and GRPr.
- In addition, their biodistribution profiles were optimized by incorporation of charged linkers (⁶⁸Ga-HE_n, n=1-3), which resulted in a significant reduction of normal organ uptake (i.e. kidneys, spleen), while tumor uptake remained at the same levels or was increased in comparison with the monomers (⁶⁸Ga-PSMA-11, ⁶⁸Ga-GRPr_m).
- These novel low-molecular weight heterodimers could potentially be applied in clinical practice as bispecific radiotracers for the noninvasive imaging of all stages of prostate cancer by means of PET/CT and PET/MRI

Thank you for your attention!

Special thanks to:

- Martin Schäfer
- Ulrike Bauder-Wüst
- Dr. Matthias Eder
- Prof. Dr. rer. nat. Klaus
 Kopka

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

50 Years – Research for A Life Without Cancer

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

pharmaceuticals