

1st International Electronic Conference on Medicinal Chemistry

2-27 November 2015 chaired by Dr. Jean Jacques Vanden Eynde

Quaternary ammonium sophorolipids as renewable based antimicrobial products

E.I.P. Delbeke¹, B.I. Roman¹, S.L.K.W. Roelants^{2,3}, I.N.A. Van Bogaert², G.B. Marin⁴, K.M. Van Geem⁴ and C.V. Stevens^{1,*}

¹ SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;

² InBio, Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;

³ Bio Base Europe Pilot Plant (BBEU), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium;

⁴ LCT, Department of Chemical Engineering and Technical Chemistry, Ghent University, Technologiepark 914, 9052 Ghent, Belgium.

* Corresponding author: Chris.Stevens@UGent.be

Quaternary ammonium sophorolipids as renewable based antimicrobial products

Graphical Abstract

Abstract:

In the European chemical industry, there is a strong drive to shift from fossil to renewable resources in the pursuit of sustainability. Sophorolipids, a class of biosurfactants, are interesting renewable resources, since they combine a complex structure with divergent biological and physico-chemical properties. The microbially produced lactonic sophorolipids were used for the production of a broad range of innovative sophorolipid amines and sophorolipid quaternary ammonium salts. These sophorolipid quaternary ammonium salts were evaluated for their antimicrobial activity against Gram-negative and Gram-positive bacterial test strains. Minimum inhibitory concentration (MIC) values were determined for the active compounds. Values of 5-8 μ M were obtained for the derivatives containing an octadecyl chain attached to the nitrogen atom, compared to values of 10-52 μ M for the antibiotic gentamicin sulfate. These results show great promise for modified sophorolipids in the medical sector, for example for the inhibition of biofilm formation.

Keywords: sophorolipids; biosurfactants; derivatization; antimicrobial activity

Renewable resources:

- Slow transition to bio-based economy
- Used for production of only 8% of chemicals (Europe)

2-27 November 2015

Fossil resources:

- Limited availability
- Negative impact on environment

Surfactant = Surface Active Compound

- Amphiphilic molecules which contain a hydrophilic and a hydrophobic molety
- Reduces interfacial tension between liquids, solids and gases by arrangement at the interface (a)
- Formation of micelles (b) at a defined concentration
- Used as detergents, wetting agents, emulsifiers, ...
- **Biosurfactants:** surface-active compounds produced by living cells, e.g. Sophorolipids

Sophorolipids:

- Sophorose as hydrophilic carbohydrate head
- Hydrophobic lipid tail

Microbial production of sophorolipids by Starmerella bombicola

Advantages:

- Low eco-toxicity and high biodegradability
- Renewable resources as feedstock
- Surface-active properties linked to biological activities
- Non-pathogenic yeast
- High production: 400 g/L

Disadvantages:

- Higher price compared to chemical surfactants
- Microbial production is restricted to few derivatives
 - \rightarrow Application range is limited to detergents

pharmaceuticals

Chemical modification of microbial product

- Goal: Synthesis of short-chained derivatives with nitrogen functionality to increase the applicability of sophorolipids for medical applications
- Synthesis of aldehyde intermediate
- Modification towards quaternary ammonium salts

Results published as: E. I. P. Delbeke, B. I. Roman, G. B. Marin, K. M. Van Geem and C. V. Stevens, *Green Chem.*, 2015, **17**, 3373-3377.

1. Synthesis of aldehyde intermediate

- Ozonolysis to intermediate sophorolipid dialdehyde 2
- Transesterification to sophorolipid aldehyde 3 failed
- Only aldolcondensation to aldehyde 5 observed

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

pharmaceuticals

MDP

sponsors:

2. Synthesis of quaternary ammonium salt library

Act		o-	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	AcO OAc AcO OAc OAc	
-	OAc OAc	c 10	R ²	OAc OAc 11	I
	Entry		R ³ I		Yield (%)
	1	10a	Methyl iodide	11a	91
	2	10b	Methyl iodide	11b	89
	3	10c	Methyl iodide	11c	96
	4	10c	Butyl iodide	11d	94
	5	10d	Methyl iodide	11e	Quant.
	6	10e	Methyl iodide	11f	89
	7	10f	Methyl iodide	11g	Quant.
	8	10g	Methyl iodide	11h	98
	9	10g	Butyl iodide	11i	Quant.

	»- <u>/</u>	R ¹ N	HO— NaOMe HO—		$\mathbb{R}^{1}_{\mathbb{N}} \mathbb{R}^{2}$
OAc OAc	11	I R ³	OI	H OH 12	I R ³
	Entry			Yield (%)	
r I	1	11a	12a	Quant.	
	2	11b	11b	88	
	3	11c	11c	Quant.	
	4	11d	12d	Quant.	
	5	11e	12e	Quant.	
	6	11f	12f	Quant.	
	7	11g	12g	99	
	8	11h	12h	97	
	9	11i	12i	66	

3. Antimicrobial testing

- Gram-positive strains: Staphylococcus aureus
 - Bacillus subtilis

Gram-negative strains: • Escherichia coli

- Klebsiella pneumoniae

- Significant growth inhibition against Gram-positive strains for some sophorolipid analogues
 - 8 peracetylated quaternary ammonium sophorolipids
 - 3 deprotected quaternary ammonium sophorolipids
- Determination of Minimum Inhibitory Concentration (MIC) for the active compounds against 4 Gram-positive strains: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium and Streptococcus pneumoniae
- Antibiotic gentamicin sulfate was used as control

Minimum inhibitory concentration (MIC) values

(µg/mL)	11h	11i	12h	12i	Gentamicin sulfate
S. aureus	10	10	5	5	5
E. faecium	10	10	5	5	10
B. subtilis	10	10	5	5	5
S. pneumoniae	10	10	5	5	25
(μM)	11h	11i	12h	12i	Gentamicin sulfate
(μM) S. aureus	11h 8	11i 8	12h 6	12i 5	Gentamicin sulfate 10
(μM) S. aureus E. faecium	11h 8 8	11i 8 8	12h 6 6	12i 5 5	Gentamicin sulfate 10 21
(µM) S. aureus E. faecium B. subtilis	11h 8 8 8	11i 8 8 8	12h 6 6 6	12i 5 5 5	Gentamicin sulfate 10 21 10

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

sponsors:

Conclusions

Synthesis of new-to-nature sophorolipids accomplished

Four derivatives with high antibacterial activity

1st International Electronic Conference on Medicinal Chemistry 2-27 November 2015

pharmaceuticals

Acknowledgments

The research leading to these results has received funding from the Long Term Structural Methusalem Funding by the Flemish Government (grant number BOF09/01M00409). The authors gratefully acknowledge the company Ecover (Malle, Belgium) and the InBio research group (Department of Biochemical and Microbial Technology, Ghent University, Belgium) for the delivery of the sophorolipid starting compound, and the Laboratory for Microbiology (Ghent University, Belgium) for the evaluation of the antimicrobial activities. Bart I. Roman is a fellow of the Fund for Scientific Research – Flanders (FWO-Vlaanderen).

