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1. Introduction

The population in the world is estimated to reach 10 billion in 2050 and the energy needs will be more
than 33.2[TW] (the figure was 13.6[TW] in 2002 and 17.8[TW] in 2012) [1]. The decarbonization, low
carbon energy supplies, and low carbon industry processes in our society are inevitable. Concurrently,
the reuse of waste heat from vehicles, industrial factories and other human activities is becoming a
significant and a serious issue over the globe than ever before for our sustainable society. In this sense,
thermoelectric generation technology because of the environmental merit is proportionally getting a
necessary and a promising research direction [2]. In a form of an overview as a keynote presentation
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of the 2nd International Electronic Conference on Entropy and its Applications (section Physics and
Engineering), this article deals with a topic that physics meets engineering in a fundamental level and
we intend to get an insight into the interface via the entropy conception. The present author is neither
an engineer nor an expert in thermoelectricity, however, it will be a benefit by considering this problem
from a possible angle that has never been challenged: the dissipated work observed in a process of
thermoelectric operation or the second law of thermodynamics formulation in which the effect of
the temperature-dependent energy levels of thermodelectric materials is taken into consideration. In
general, the properties of materials depend on temperature. Accordingly, their electrical and thermal
conductivity varies with temperature, the influences of which can be very important in thermoelectric
generation [3].

The organization of this article is as follows. We shall first attempt to summarize the past studies on
temperature dependency in semiconductor and we point out why a new expression of irreversibility
processes (i.e, the second law of thermodynamics) seems necessary for a legitimate description of
entropy production in thermoelectric devices. In Section 3, we consider the temperature-dependent
energy levels from the general statistical ensemble theory. The literature of thermoelectricity is vast and
has a long tradition. Therefore, the comprehensive overview is beyond the author’s ability and is not
the present purpose. We limit ourselves to cite relevant and major references. Also, an overview of the
state-of-the-art and recent advances in thermoelectric materials and their properties is not included. In
Section 4, we overview the extended expressions of the second law. Some new results are also presented
in Sec. 4.4. The last section provides a summary statement.

2. Thermoelectric phenomena as irreversible process

Temperature differences between two contacted conductive materials can induce heat flow; it
is observed by measuring voltage and current. Conversely, electrically induced heat flow causes
temperature difference (dT ) between them. One of the striking irreversible processes is these
thermoelectric phenomena known as the Seebeck and the Peltier effects observed in semiconductor
materials [4]. When the total current is I , the Seebeck coefficient is defined by the relation S =

dV/dT |I=0, where dV is the Seebeck elective motive force across the device boundary. On the other
hand, when the induced current is Iid, the Peltier coefficient is defined as Π = Q̇/Iid|dT=0, where Q̇ is the
total heat flux. The relation between the two coefficients, i.e., Π = ST (the second Kelvin relation) was
obtained in 1930’s by the second law of thermodynamics by Thomson [4]. The measurement technique
of the Seebeck coefficient and other thermoelectric quantities are described in detail, e.g., in chapter 8 of
Ref. [3].

Thermoelectricity has a long tradition since its discovery by Thomas J. Seebeck, Jean C. A. Peltier
and William Thomson (Lord Kelvin) [5–7]. It was already referred to as revival more than half a century
ago [8] (see [9] for a historical overview.). However, it is now active discipline as a fundamental physics
as well as an engineering pursuit. In this article, we shall have interests in thermoelectricity in terms
of the manifestation of the second law of thermodynamics. As Tolman and Fine [10] had recognized,
a measure of the total irreversibility occurring in the thermoelectric process can be quantified by the
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entropy production within the system. In this line, we focus on the second law within a thermodynamic
device.

2.1. Evidences: Temperature-dependency in semiconductors

The bandgap in semiconductors dependents on temperature (see e.g. [3] for the introduction from an
engineering aspect). In semiconductor materials, the electronic energy levels of a charge carrier (electron
or hole) shift with temperature as a result of interaction with lattice vibrations, i.e. the electron-phonon
interaction [11]. In addition, there is an effect of the lattice expansion/contraction depending on the
temperature. Accordingly, the temperature dependence of energy gap Eg(T ) between the conduction
and the valence bands becomes particularly important. The phenomenological relation at temperature T
has been given by Varshni [12] in the literature:

Eg(T ) = E0 −
αT 2

T + β
, (1)

where α and β are constants that are specific to materials. The E0 is its value at the zero temperature.
A recent refined formulation is given by using the Bose-Einstein statistical factor and prominent
transverse-acoustic and transverse-optical bands in the measured or calculated phonon density of states
([13] and references therein).

Among three temperature ranges from low to high, i.e., the ionization, the intrinsic, and the extrinsic
range in doped materials, it is known that carrier densities in the intrinsic range strongly depend on
temperature (proportional to T 3/2 exp(−E0/2kT )) [14]. On the other hand, they are constant over a wide
range of temperature in the extrinsic range. The carrier mobility µ of materials is also highly temperature
dependent. As temperature increases, mobility decreases as lattice vibrations cause carriers more scatter.
This effect is proportional to T−3/2 at high temperatures but it becomes linearly proportional to T at low
temperatures [14].

In addition to the seek for the appropriate gap formulation that includes temperature effects, the
studies of temperature dependences of electronic energy levels in an understanding of electronic
properties of solids have been one of the old important topics (e.g. [15,16]). Also, the treatment in the
framework of statistical mechanics has been addressed [15,17]. A recent consideration is presented in
Ref. [18]. Experimentally, the evidence of temperature-dependent energy levels in conductivity and
mobility has been reported [19]. Its direct effect on the Peltier heat, an isothermal thermodynamic
quantity supplied by a move of a charge carrier into a material, was discussed based on the Helmholtz
free energy more than 30 years ago ([20–22] and references cited therein). It should be noted that these
materials are used as thermoelectric heater, cooler, and generator in practical applications.

We shall overview the results reported in Refs. [20–22] here to validate our viewpoint of improving
or refining the expression of the second law of thermodynamics. Energy levels in materials change with
temperature dominantly by an interaction of electrons with lattice vibrations [19]. The thermal vibration
of lattice affects frequency of collisions and causes a broadening of electron energy levels resulting in
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reducing the bandgap. It affects significantly the Peltier heat device. The Peltier heat associated with a
carrier in the kth electronic state is given as

Πk = EQ
k − µ, (2)

where EQ
k is the quasiparticle energy defined as E ′k − T∂E ′k/∂T with an effective electronic energy E ′k

and µ is the chemical potential. The weighted average of each quantity with respect to the contribution
of the kth level to the electric conductivity σk reads

Π =

∑
k Πkσk∑
k σk

=

∑
k E
′
kσk∑

k σk
− T

∑
k

∂E′
k

∂T
σk∑

k σk
− µ. (3)

This quantity can be comparable to the expression derived from a model of phonon occupation [20]; Π =

Ee+(AkB−γ)T−µ, whereEe is the edge of the conduction band of the semiconductor and the constant
A is a range of energies above the edge, and kB is the Boltzmann constant. The positive coefficient γ
characterizes the shift of the electric energy levels. Therefore, we have a formal correspondence as the
source of temperature dependence of the Peltier heat; that is, the quantity 〈∂E ′k/∂T 〉 is identified with
the coefficient γ − AkB, which is a positive value. On the other hand, the analysis of the thermoelectric
effects in terms of three independent kinetic coefficients L11, L12, and L22 with the Onsager reciprocity
relation has been presented [4,9], in which the change of entropy ∆S of the material when an electron
is added to it is given by L21/(TL11). As an averaged property, this entropy transported per carrier has
a direct link to the Seebeck coefficient, and in this sense, it is a fundamental quantity. The Peltier heat is
thus given as Π = T∆S. By combining this relation with the expression of Π i.e., Eq. (3) together, we
have an interpretation: 〈∂E ′k

∂T

〉
=
〈E ′k〉 − µ

T
−∆S. (4)

If the effective energy level does not depend on the temperature, i.e., the quantity 〈∂E ′k/∂T 〉 vanishes,
we reduce to the usual formula for the Peltier heat; 〈E ′k〉 − µ. Summarizing the point up to here, the
extra temperature-dependent term appearing in a form of heat is attributed to the linear coefficient of the
temperature in the Peltier heat formula and it is also caused by entropy change by the addition of an
electron in the material.

In addition to the above evidences for necessity of the inclusion of temperature dependent
energy levels into consideration, we mention a recent work on the solar cell material, MAPBI3

(methylammonium lead iodide) perovskite, whose photovoltaic conversion efficiency is getting record
high recently. The perovskite material is an emerging and next-generation material for efficient
photovoltaic cells (e.g. [23] and cited therein). Interestingly, the change in the energy values of the
valence band maximum and the conduction band minimum of MAPBI3 show the downward shift and
they are attributed to the change in the bandgap. The shifted values are recently measured as 110 meV

and 77 meV respectively as temperature increases from 28◦C to 85◦C [24].
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2.2. Thermoelectricity as a heat engine

A concise review on thermoelectric phenomena and its analogy to a thermodynamic engine is
presented in Ref. [9]. We only mention the structural setting for the purpose of the subsequent sections.
A sample of thermoelectric material, inside which the Fermi gas (electrons) is confined as a working
fluid instead of a molecule gas in a steam engine. It is maintained at a higher temperature at one end and
the other side at a lower one. We usually expect extracting a work from the device in a suitable condition.

3. Origin of temperature dependency in statistical mechanics

We present the origin of temperature dependent energy levels in statistical mechanics by considering
a general statistical ensembles, in which the canonical ensemble is only a particular case. The author
owes greatly to Landsberg [25] for this section.

3.1. Gibbs-Helmholtz pair in general context

The use of ensembles in statistical mechanics suggests the possibility of writing for a probability

Pl =
g(ηl)

ξT
, ξT ≡

∑
l

g(ηl), (1 ≤ l ≤ n), (5)

where the arbitrary function g should be specified by the key properties of ensembles. In Eq. (5),
g(ηl) can depend on an energy El divided by kBT . This energy could be an enthalpy for example.
Thus El ≡ kBTξT can be a temperature-dependent quantity, and the ensemble specified by Eq. (5) is
contracted.

One can extract analogues of average energies and free energies from Eq. (5) by differentiating with
respect to T with a set of thermodynamic variables {x} to be constant. For examples, {x} can stand
for volume and number of particles (v,N) for canonical ensembles or pressure and number of particles
(p,N) for pressure ensembles. One finds

kBT
2

(
∂ lnPl
∂T

)
{x}

= kBT
2

(
∂ ln g(ηl)

∂T

)
{x}
− kBT 2

(
∂ ln ξT
∂T

)
{x}

. (6)

Multiplying Eq. (6) by Pl and summing over l, we find

kBT
2
∑
l

Pl

(
∂ ln g(ηl)

∂T

)
{x}

= kBT
2

(
∂ ln ξT
∂T

)
{x}
≡ ε{x}, (7)

where we used that the last term in Eq. (6) does not depend on these parameter values,∑
l

Pl

(
∂ lnPl
∂T

)
{x}

=
∑
l

(
∂Pl
∂T

)
{x}

=
∂

∂T
[
∑
l

Pl] = 0.

The canonical ensemble result U = kBT
2(∂ lnZ/∂T )V,N makes one think of ε{x} as a generalized

average energy. Furthermore, one can write Eq. (7) differently:

kBT
2
∑
l

Pl

(
∂ ln g(ηl)

∂T

)
{x}

= ε̃{x} − T
(
∂ε̃{x}
∂T

)
{x}

= ε{x} (8)
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where we have introduced
ε̃{x} ≡ −kBT ln ξT . (9)

The suffix {x} on the left is intended as an indication that ε̃{x} is conjugate to ε{x}. The canonical
ensemble result F = −kBT lnZ makes one think of ε̃{x} as a free energy. Based purely on Eq. (5),
we have therefore obtained a pair of quantities ε{x} and ε̃{x} which are related by the Gibbs-Helmholtz
(GH) relation Eq. (8). Typical pairs are not only internal energy U and Helmholtz free energy F with
{x} = (V,N), but also enthalpy H and Gibbs free energy G with {x} = (p,N), since

F − T
(
∂F

∂T

)
V,N

= U, G− T
(
∂G

∂T

)
p,N

= H. (10)

Let a heat capacity at constant x be given such that

ε{x}(T ) =

∫ T

0

C{x}(τ)dτ.

Then if (ε̃{x}, ε{x}) is a GH pair in the sense of Eq. (8) or Eq. (10), we have the following facts

(i) Integrant of the GH relation:

ε̃{x}(T ) = −T
∫ T

0

ε{x}(τ)

τ 2
dτ = −T

∫ T

0

dτ

τ 2

∫ τ

0

C{x}(y)dy. (11)

(ii)

[

(
∂ε̃{x}
∂T

)
{x}

,

(
∂(ε̃{x} + ε{x})

∂T

)
{x}

] (12)

is also a GH pair.
The fact (ii) is easily seen by the relation ∂2ε̃{x}/∂T

2 = −T−1∂ε{x}(T )/∂T obtained from Eq. (11) and
since the GH relation Eq. (8) for (∂ε̃{x}/∂T ){x}, instead of ε̃{x}, is(

∂ε̃{x}
∂T

)
{x}
− T

(
∂2ε̃{x}
∂T 2

)
{x}

=

(
∂ε̃{x}
∂T

)
{x}

+

(
∂ε{x}
∂T

)
{x}

.

The right hand side replaces ε{x} of Eq. (8). It is obtained by using the fact that differentiation of
T (∂ε̃x/∂T ){x} = ε̃{x} − ε{x} yields

T

(
∂2ε̃{x}
∂T 2

)
{x}

= −
(
∂ε{x}
∂T

)
{x}

.

Observe that by virtue of Eq. (8) and Eq. (9)

−
(
∂ε̃{x}
∂T

)
{x}

= kB ln ξT +
ε{x}
T
. (13)

We know that, for {x} = (v,N) and (p,N), ε̃{x} is F and G respectively, and from normal
thermodynamics that the entropy satisfies

S = −
(
∂F

∂T

)
v,N

= −
(
∂G

∂T

)
p,N

. (14)

Thus Eq. (13) gives possible entropy definitions in our general frame when the variable {x} are kept
constant.
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3.2. Entropy and temperature-dependent energies

An entropy-type expression is, using Eq. (5)

− kB
∑
l

Pl lnPl = −kB
∑
l

Pl ln g(ηl) + kB ln ξT . (15)

Noting that in standard thermodynamics,

S =
U − F
T

=
H −G
T

, (16)

we adopt instead of Eq. (15) the definition (which agrees with Eq. (13))

S ≡
ε{x} − ε̃{x}

T
=
ε{x}
T

+ kB ln ξT . (17)

By Eq. (7) together with Eq. (15) and Eq. (8), Eq. (17) yields

S = kBT
∑
l

Pl

(
∂ ln g(ηl)

∂T

)
{x}
− kB

∑
l

Pl lnPl + kB
∑
l

Pl ln g(ηl)

= −kB
∑
l

Pl{lnPl − [
∂

∂T
T ln g(ηl)]{x}}. (18)

Before discussing Eq. (18) note that Eq. (7) gives

ε{x} = −
∑
l

d ln g(ηl)

dηl
Pl[El − T

(
∂El
∂T

)
{x}

]. (19)

A possibility of finding Eq. (19) in the standard form

ε{x} =
∑
l

PlEl (20)

occurs if g(ηl) = exp[−ηl] when Eq. (19) is

ε{x} =
∑
l

Pl[El − T
(
∂El
∂T

)
{x}

] (21)

and Eq. (18) is

S = −kB
∑
l

Pl[lnPl +
1

kB

(
∂El
∂T

)
{x}

]. (22)

Thus the use of the ensemble in general frame with the exponential g-function may not lead to the usual
expression Eq. (20) for the average energy or for the average enthalpy or for the average of whatever
energy El represents. Nor do we always find the usual expression, given by the left hand side of Eq.
(15), of the entropy: There are correction terms 〈

(
∂El

∂T

)
{x}〉 due to the possible temperature-dependence

of the energies El.

Alternatively, one can choose the terms arising from the temperature dependence of El in Eq. (7) to
be eliminated altogether. One then requires the function g to be such that the general equation Eq. (7)
reduces to the special form Eq. (20). Thus

kBT
2

(
∂ ln g(ηl)

∂T

)
{x}

= El, (23)
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i.e.

g(ηl) = exp[

∫ T

T0

El
kBτ 2

dτ ] ≡ exp[− Ẽl
kBT

]. (24)

Here T0 is a fixed temperature and the newly introduced quantity Ẽl satisfies

Ẽl − T

(
∂Ẽl
∂T

)
{x}

= El.

Thus one may also use in the Boltzmann factor quantities Ẽl related to the given temperature-dependent
energies El by a GH relation. If the El are energies, one may use a free energy in the exponent of
the Boltzmann factor; if the El are enthalpies one may use a Gibbs free energy in the exponent. The
exponential form set for g represents a special case. There are clearly other possibilities as well and the
thermodynamic structure is preserved [26,27].

More precisely, El’s are determined by a set of quantum numbers, which specify a state of system and
are subdivided into two sets {α} and {α′}, i.e., El({α}, {α′}). The set {α} represents the set of interest
and its occurrence as a suffix tells one that the form of the function (ξT and Pl in the above case) depends
on the choice of {α}. Its occurrence as a parameter tells one that the value of the function depends
parametrically on the value which the i’s have. The temperature-dependence arises from the summation
over the quantum numbers in the irrelevant set of {α′}. If the set {α′} is empty, however, it can
represent a normal canonical ensemble in which the El({α}) are solutions of the Schrödinger equation
and therefore independent of temperature. These settings become significant when one considers a
transition from statistical mechanics to thermodynamics [28].

4. Improvement of the second law expression

Having obtained enough justification of considering temperature-dependent energy levels, we are
now in a position to think about how it is reflected into the effective description of the second law. The
second law has arguably been a central issue in thermodynamics in irreversible nature [29–31]. In spite
of these background described in the previous sections, it has only recently attempted to incorporate
the dependency of temperature into the heat irreversibly lost in the thermodynamic processes. We
particularly have interest in the dissipated heat or entropy production and how it alters the expression of
the second law of thermodynamics.

4.1. Some backgrounds

It is common and usual to express the Clausius inequality as an equality (i.e., entropy balance
equation) in chemical engineering and mechanical engineering literature [32–35] (We summarize the
terminology at the end of this section). In fact, Clausius himself has introduced an equality form instead
of inequality to evaluate the amount of entropy produced irreversibly in total system [36]:

∆S −
∫
dQ

T
= N, (25)
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where ∆S here denotes the difference in entropy between initial and final states and dQ denotes heat
exchanged. The positive quantity N (due to the very definition of the second law in the Clausius’s
sense) represents the degree of the entropy production within a system in irreversible processes. It was
originally termed as uncompensirte Verwandlung (uncompensated transformation) by him [36–38]. The
corresponding explanation can be seen in Section 3.4 of the modern textbook [38,39]). Tolman and Fine
[10] have emphasized significance of being able to express it in the form of an equality by including the
entropy that produced irreversibly inside the system and have discussed the validity of the expression.
They termed it the second law equality.

Shortly thereafter, the local formalism for continuous open systems by Prigogine and Onsager
became a well-known formulation [39], in which the change in entropy is attributed to two sources;
the entropy change deS due to exchange of matter and energy through boundaries of a system, and the
entropy production within a system diS by an irreversible process. In this approach, one also leaves
behind the original inequality and only needs to consider the equality.

We next mention two recent approaches to the equality form of the second law. The first one is
taken by Ben-Amotz and Honig [40,41]. They have presented it as a rectified form by introducing the
entropy deficit function θ. It quantifies the total entropy change in both system and heat bath (note that
the symbol θ does not denote the conventional empirical temperature). By this the Clausius inequality
becomes an equality (A recent review on this approach can be accessed in Ref. [42]). In this approach
to irreversible work, there is no need to invoke and specify thermodynamic forces and dissipation fluxes
as per the formalism by Prigogine and Onsager. Furthermore, they combined the net entropy production
with a work relation of irreversible processes found by Jarzynski to obtain the rectified form, aiming at
experimentally and numerically evaluating the thermodynamic dissipative work. These considerations
can offer a litmus test of the validity in the light of advances on RNA pulling experiments, in which the
work value can be directly measured in such irreversible molecular processes [43–45].

On the other hand, the authors of Refs. [46,47] have derived a generalized second law in
modeling communication channels as a thermal system. They derived the following form:
dS = dQ/T − T−1〈dE/dT 〉dT , where dQ is heat absorbed by the system with temperature T

and E is the temperature-dependent energy which is a source of the alteration. When E is independent
of temperature, we recover the standard form dS = dQ/T . This generalization asserts that the
uncompensated heat in Clausius sense displaces the original entropy change of the system by an amount
of T−1〈dE/dT 〉dT .

We emphasize that the above background constitutes a sufficient incentive that must be addressed
in a formulation of the second law equality on a sound footing: Heat and work that are
exchanged/performed irreversibly should be quantified by combining temperature-dependent energy
levels and the nonequilibrium work relation. The previous works do not cover the case of
temperature-dependent energy levels. Therefore, the further extended rectification or improvement of
the second law expression is possible.
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Note on the terminology for the Clausius’ N :
The following terminology used in different disciplines denotes essentially the same conception.

• Uncompensated transformation (Clausius [36])

• Second law equality (Tolman and Fine [10])

• Entropy balance (Chemical & Mechanical engineering [33–35,48])

• Entropy generation or production (Prigogine and others [38,39])

• Entropy deficit function [40,41]

4.2. The rectification via nonequilibrium work relation

In this section, we look a bit closer the approach presented in [40,41] and we shall point out that a
further extended form is possible along the same line when a system has the temperature-dependent
energy levels [49]. Let d̄ indicate an infinitesimal change in thermodynamic quantities during processes
when the symbol is put before them. With this symbol, in general, we do not make any distinction
according to irreversibility, whereas the symbol δ usually denotes infinitesimal and reversible changes
in quantities.

The dissipated (or dissipative) work (d̄W )d plays a central role and it is an energy that the system
does work on surroundings, during which the temperature of the system is usually different from the
surrounding’s one. In an infinitesimal process, it is defined as the difference between work exchanged
irreversibly (d̄W )irr and the one reversibly (d̄W )rev [32,40,41],

(d̄W )d = (d̄W )irr − (d̄W )rev. (26)

We understand these quantities as being averaged over repeated performances under same constraints,
which provide operationally measureable irreversible relations. We omit here the bracket symbols 〈〉
for denoting average for simplicity. In terms of heat exchanged, it can also be expressed as (d̄W )d =

(d̄Q)rev − (d̄Q)irr, where (d̄Q)rev and (d̄Q)irr denote the heat exchanged by following irreversible and
reversible paths between given initial and final states, respectively. The quantities in irreversible changes
do not coincide with the reversible counterparts, i.e., (d̄W )irr 6= (d̄W )rev and (d̄Q)irr 6= (d̄Q)rev, which
is the origin of dissipation (entropy generation SG). Therefore, the second law indicates

(d̄W )d
T

= SG. (27)

The central concern in engineering is to evaluate (d̄W )d experimentally or numerically [50]. On
the other hand, according to the nonequilibrium work relation presented by Jarzynski [53], we have an
intriguing relation

〈e−βW 〉 = e−β∆F , (28)

where β−1 = kBT as usual and ∆F is the Helmholtz free energy difference between the two equilibrium
states. The quantity ∆F is equivalent to (d̄W )rev. The total work W performed during a process
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inherently contains irreversible and reversible contributions. A merit of this relation is that measuring
work in irreversible processes (i.e., real situations) requires finite time whereas one needs infinite time to
measure the corresponding reversible work (d̄W )rev. Therefore, the transformation from the reversible
to the irreversible work is practically useful. However, this relation is only valid for processes that starts
and ends at states that are in isothermal contact with a heat reservoir. Within the scope of this validity,
Ben-Amotz and Honig [40,41], under the assumption that fluctuations in the irreversible work are small
compared to kBT , has combined Eq. (27) with the work relation (by regarding W as (d̄W )irr) and has
derived the following equality expression:

(d̄W )d
T

= kB ln
〈
e
− (d̄W )irr

kBT

〉
+

(d̄W )irr
T

. (29)

This tells us that the dissipated work can be obtained in finite time. We once again note that we are
omitting the brackets symbols for (d̄W )d and (d̄W )irr. The brackets are understood to denote taking the
arithmetic mean over the number of performances after taking the statistical mean of the factor within
the logarithm over possible states. When the system is in contact with a reservoir and the temperatures
are different (say, T and T0 respectively), the above result is generalized as [40,41]

SG =

(
1− T

T0

)
(d̄Q)irr
T

+
(d̄W )d
T

. (30)

which is consistent in terms of positivity; the first term of the right hand side is positive because the heat
flows from higher to lower temperatures and the second due to the positivity of dissipated work. This
formulation can be applicable to the evaluation of entropy produced in a thermoelectric device, where
an interface between two thermoelectric materials at different temperatures is exposed to a series of
irreversible processes.

4.3. Note for systems with temperature-dependent energy levels

A further extension is in principle almost straightforward in cases where the materials have
temperature-dependent energy levels. Consider now two systems 1 and 2, each of which has initially
well-defined homogeneous temperatures T1 and T2, respectively. The heat flow between 1 and 2 occurs
upon contact, and work is in general also exchanged between them as a result of mechanically irreversible
motion. In this note, however, we exclude mechanical works because it is zero when thermoelectric
devices are held fixed by constraints: i.e., dU (j) = (d̄Q)

(j)
rev/irr, (j = 1, 2). Therefore, the total change in

entropy (dS)total for the composite system 1 + 2 in a reversible and/or irreversible process reads

(dS)total =
2∑
j=1

(
(d̄Q)

(j)
γ

Tj
− 1

Tj

〈dEj(Tj)
dTj

〉
dTj

)
, (31)

where the symbol γ designates either rev or irr. Since the two systems are thermally in contact with each
other at both initial and final equilibrium states, the heat exchanged satisfies a relation (d̄Q)1

rev+(d̄Q)2
rev =

0 if it is done reversibly. This means that the absorbed heat by 1 reversibly can all be attributed to 2 as a
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heat source and vice versa. Hence as usual the sum of the first terms of the above indicates the transfer
of the reversible heat from the higher temperature to the lower one:

(d̄Q)1
rev

T1

+
(d̄Q)2

rev

T2

=

(
1

T1

− 1

T2

)
(d̄Q)1

rev. (32)

Thus, the total entropy change can be expressed as

(dS)total =

(
1

T1

− 1

T2

)
(d̄Q)1

rev −
2∑
j=1

1

Tj

〈dEj(Tj)
dTj

〉
dTj, (33)

which shows that if a process is done in an isothermal way (T1 = T2), the entropy produced comes
purely from the existence of the temperature-dependent energy levels. The corresponding formulation
for non-infinitesimal processes can be obtained by labeling infinitesimal expressions as intermediate
steps of small finite changes and summing over them.

4.4. An example – heat engine

A formulation of the second law which is suitably reflected by the effect of the temperature-dependent
energy levels in materials operated in a thermodynamic environment is a new direction. We consider
the improved second law formulation applied to a thermodynamic cycle in this section. Since the
thermoelectric power cycle can be regarded as a heat engine with electrons serving as the working fluid
that cannot outperform the Carnot, we shall see how the efficiency is formulated when the temperature
dependent energy effect is included. In an irreversible process, the entropy change is expressed as

dS =
(d̄Q)irr
T

+ SG (34)

where we have used the above notation instead of one in Eq. (25). When the energy levels do not depend
on temperature, the entropy generation SG is (d̄W )d/T with the dissipated work. However, in the present
case, it is replaced by a modified form

SG =
(d̄W )d
T
− 1

T

〈dEl
dT

〉
dT (35)

when a system has temperature-dependent energy levels [54]. The derivative of lth energy level El of
the system with respect to temperature involves and the brackets denote an ensemble average over all
microstates. For a cycle, the balance equations for energy and entropy are respectively given as{

(d̄Q̃h)irr + (d̄Wh)irr + (d̄Q̃c)irr + (d̄Wc)irr = 0
(d̄Q̃h)irr
Th

+ (d̄Q̃c)irr
Tc

+ SG = 0.
(36)

The first equation comes from the change of the internal energy vanishes dU = 0 for a cycle. The
second equation follows from the fundamental balance equation Eq. (34). Note however that the heat
with the tilde symbol is clearly distinguished from the heat without it; i.e., d̄Q̃ 6= d̄Q. The effective
heat d̄Q̃ [46,47] must be used for the consistent thermodynamics description of the present case, which
is given as (d̄Q)irr − 〈dEl

dT
〉dT . The suffixes h and c is to denote hot and cold, respectively. Therefore,

irreversible works done from the higher and the lower temperature sources are denoted as (d̄Wh)irr
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and (d̄Wc)irr, respectively. Thus, the total work that the thermoelectric system gives to the sources is
−(d̄W )irr = −(d̄Wh)irr − (d̄Wc)irr, and from Eq. (36) it can be expressed as

−(d̄W )irr = (d̄Q̃h)irr

(
1− Tc

Th

)
− TcSG. (37)

If the cycle is done reversibly, the entropy generation vanishes SG = 0 and the suffixes read irr →
rev. In this case, we have of course the usual Carnot form; (d̄W )rev = (d̄Qh)rev(1 − Tc/Th), in which
(d̄Qh)rev is heat reversibly transferred out of the higher temperature source. We have therefore the
thermal efficiency η for this engine defined as the ratio of the actual work and the invested effective heat:

η =
−(d̄W )irr

(d̄Q̃h)irr
= 1− Tc

Th
− TcSG

(d̄Q̃h)irr

= 1− Tc
Th
− TcSG

(d̄Qh)irr − 〈dEl

dT
〉(dT )h

, (38)

where (dT )h is a temperature difference induced by heat transfer at the boundary of the higher
temperature side. Since the Carnot cycle has maximum in the efficiency among all types, this expression
indicates that a relation (d̄Qh)irr/(dT )h > 〈dEl

dT
〉 has to be satisfied. In addition to the heat engine,

the effects of the temperature-dependent energy levels on the performance characteristics for the heat
transfer and the heat pump were investigated in Ref. ([54]), where the modified forms of efficiencies are
derived. In conclusion, when one correctly includes the temperature dependency in energy levels in the
description of entropy generation in thermoelectric device materials, new efficiency may be formulated.

5. Summary

This article showed an improved approach to the second law of thermodynamics for applications of
thermoelectric systems. The new possibility is to take the existence of temperature-dependent energy
levels of materials into consideration together with the associated thermodynamic treatment. This may
potentially open up a direction for increasing the performance of devices, because the thermoelectric
devices has long been confronted with difficulty in increase of their efficiencies. As we have focused,
this issue may be improved from a different view point; irreversibility analysis or entropy production
by considering the temperature dependency of the materials to optimize the design and the performance.
The line of consideration presented will have more importance than ever when the size of the system gets
smaller and the domain of temperature for the operation get down to mK region. The author expects
that this short overview enables to lead a better engineering of thermoelectric devices.
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