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Abstract: In this paper local sensitivity measures are proposed to evaluate deviations from
multivariate Gaussianity caused by asymmetry; the model we use to regulate asymmetry is
the multivariate skew-normal distribution because it reflects the deviation in a very tractable
way. The paper also examines the connection between local sensitivity and Mardia’s
and Malkovich-Afifi’s skewness indices. Once the local sensitivity measures have been
introduced, we study the effect of local perturbations in asymmetry on the conditional
distributions; this issue has important implications because there are many procedures in
statistics and other fields where the output depends on the distribution of some variables for
known values of the others. The proposed measures use the Kullback-Leibler divergence to
evaluate dissimilarities between probability distributions in order to assess deviation from
Gaussianity on the joint distribution and on the marginal and conditional distributions as
well. The results are illustrated with some examples.

Keywords: Kullback-Leibler divergence measure; Local sensitivity; Non-Gaussianity

MSC classifications: 62H99



Entropy 2015, xx 2

1. Introduction

Because non-Gaussian data are common in many applications, a natural question that arises is whether
the usual methods can be applied when the probability models do not satisfy the Gaussianity assumption.
We study this issue, present mathematical results, and discuss when and how, in spite of the asymmetry
effect, they may be accomplished. The issue we consider here is the effect of deviated joint distributions
on the corresponding marginal and conditional ones for a partition multivariate vector of the variables.
Many procedures in statistics deal with a Gaussian random vector Z divided in two blocks with different
roles. One of these techniques for modeling continuous multivariate data is Gaussian Bayesian networks
(GBN). They represent the dependence structure of a set of random variables with directed acyclic graphs
(DAG), where the presence or absence of edges between the nodes with variables represent conditional
dependence or independence of the variables in the model [? ? ]. For inferential purposes, the network
variables are partitioned into two categories: interest and evidence variables, which are also known as
non-observable and observable variables and the output is given by the conditional distribution of the
interest variables for some known values of the evidential variables. This inference procedure, termed
evidence propagation, is computationally tractable under Gaussianity and linearity assumptions and the
exact conditional distributions are available. However, Gaussian deviations introduce both computation
and interpretation problems. Therefore, a key point is to know if the output of our model is robust
to slight perturbations because it would allow the use of the well behaved methods of the Gaussian
distribution when the actual model is not exactly as assumed. This problem has been studied for kurtosis
perturbations using the multivariate power exponential distribution as the underlying model for handling
kurtosis [1]. In this work we focus on asymmetry deviation from Gaussianity so the multivariate
skew-normal (SN) distribution [2,3] is used as the alternative model. With this aim, we calculate the
relative conditional sensitivity measure to evaluate the effect of the asymmetry on the marginal and
conditional distributions. The tool to evaluate deviations from Gaussianity is the Kullback-Leibler
(KL) divergence measure. Although it is a non-symmetric measure, it gives a good representation of
deviations between Gaussian distributions, which involves tractable calculations; moreover, some recent
studies also present fine results for SN distributions [4]. As an example we apply our measures to
permutation-symmetric Gaussian variables, illustrated by a complete DAG with a common correlation
coefficient; some available results for this case provide revealing findings when the proposed measures
are used.

The paper is organized as follows: in the next section we review the fundamentals of the multivariate
SN distribution. In Section 3 we propose the new local sensitivity measure and study its connection
with Mardia’s and Malkovich-Afifi’s skewness indices; we also adapt the local measure to derive a
local relative sensitivity index. Section 4 is concerned with the evaluation of the effect of asymmetry
perturbations on the conditional distributions and a relative conditional sensitivity measure is defined as
an essential tool to deal with deviation from Gaussianity characterized by skewness. We finish the paper
with a summary of the main findings and some practical implications regarding the proposed measures.

2. The multivariate skew-normal distribution
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The multivariate skew-normal distribution was introduced by [2] in order to model departures from
multivariate Gaussianity which are related to asymmetry. From the very beginning the SN multivariate
distribution has been widely accepted as a modeling tool in scenarios where the Gaussianity assumption
on the stochastic mechanism that generates the data fails. Its tractability and appealing properties have
enhanced the usefulness of the SN distribution both in theoretical and applied multivariate analysis.
Some works discussing its main properties with an emphasis on applications are Azzalini and Capitanio
[35], Capitanio et al. [6], Azzalini [7], Loperfido [8], just to name a few.

In this paper we adopt the notation of the aforementioned works to define the density function of a
p-dimensional SN random vector with location vector ξ = (ξ1, . . . , ξp)

′ and scale matrix Ω as follows:

f(z; ξ,α,Ω) = 2φp(z − ξ; Ω)Φ(α′ω−1(z − ξ)) : z ∈ Rp, (1)

where φp(·; Ω) denotes the p-dimensional Gaussian density with zero mean and full rank covariance
matrix Ω, Φ is the distribution function of a standard Gaussian random variable, ω = diag(ω1, . . . , ωp)

is a scale diagonal matrix with non negative entries such that Ω̄ = ω−1Ωω−1 is a correlation matrix, and
α is a p-dimensional shape vector regulating the skewness of the distribution.

We will write Z ∼ SNp(ξ,Ω,α) to denote that Z follows a p-dimensional SN distribution with
density function (1). When α = 0 the multivariate SN becomes a p-dimensional Gaussian variate with
mean vector ξ and covariance matrix Ω; so we can putZ ∼ SNp(ξ,Ω,0) or equivalentlyZ ∼ Np(ξ,Ω).

It is worthwhile noting that ξ and Ω do not correspond to the mean vector and the covariance matrix
of the SN variate unless α = 0, i.e in the Gaussian case. In fact, E(Z) = ξ +

√
2/πωδ and V ar(Z) =

Ω− (2/π)ωδδ′ω, where δ = (1 +α′Ω̄α)−1/2Ω̄α [3].
On the other hand, we can also observe that Z = ξ + ωZ0, where Z0 is a multivariate skew-normal

variable with density function given by

f(z; 0,α,Ω) = 2φp(z; Ω̄)Φ(α′z) : z ∈ Rp. (2)

We refer to Z0 as the “ normalized ” multivariate SN variate [3].
An appealing feature of the SN distribution with density (1) is that classical non Gaussianity indices

like Mardia’s measures of skewness and kurtosis [9] and Malkovich-Afifi’s skewness and kurtosis [10]
admit a simple closed form. From [5] we know that Mardia’s measures of skewness and kurtosis are
given by

γM1,p = 2(4− π)2
{

α′Ω̄α

π + (π − 2)α′Ω̄α

}3

(3)

γM2,p = p(p+ 2) + 8(π − 3)

{
α′Ω̄α

π + (π − 2)α′Ω̄α

}2

. (4)

On the other hand, Malkovich-Afifi’s indices of skewness and kurtosis, which will be denoted by γD1,p
and γD2,p, are closely related to Mardia’s measures; they are given by γD1,p = γM1,p and γD2,p = γM2,p − p(p+

2) + 3 [8].
All these measures, along with their omnibus versions, share the common characteristic of being

non decreasing functions of the quantity α∗ = α′Ω̄α; hence, α∗ can be understood as a scalar that
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summarizes the departure from Gaussianity in the SN model. This finding has been previously reported
by [3] who presented α∗ as an indicator that encapsulates the non Gaussianity of the multivariate SN
distribution. In the next section we provide a deeper insight about how to interpret this quantity, as well
as what it measures intrinsically; we will also examine its meaning in connection with the local deviation
index we are going to introduce now.

3. Local deviation and relative local deviation indices

The KL divergence was introduced as a generalization of Shannon’s entropy and has been widely
used in both statistical inference and information theory. This divergence is a non-symmetric measure
that provides global information on the difference between two probability distributions [11].

The KL divergence between two probability densities f and g, over the same domain X , can be
defined as follows

DKL(f, g) =

∫
X
f(w) ln

f(w)

g(w)
dw. (5)

We can say that (5) is the KL divergence between densities f and g or alternative the KL divergence
between their corresponding univariate random variables X and Y , so we can also denote it by
DKL(X, Y ). The definition can be extended to multivariate density functions in a natural way to deal
with the KL divergence of multivariate random vectors.

The main results of this paper rely on the KL divergence between multivariate Gaussian and SN
variables. The next proposition provides a result for calculating it. For the sake of simplicity we take
ξ = 0.

Proposition 1. Let Z and Zα be p-dimensional random vectors such that Z ∼ SNp(0,Ω,0) and
Zα ∼ SNp(0,Ω,α) respectively. Then we obtain that DKL(Z,Zα) = −E

[
log 2Φ

(√
α∗Z

)]
, where

α∗ = α′Ω̄α and Z is a standard Gaussian random variable.

Proof. We proof the assertion of the statement by adapting the argument in [4] to the previous
parametrization of the SN model. From expression (1) we obtain that the KL divergence between Z
and Zα is given by

DKL (Z,Zα) =

∫
Rp

φp (z; Ω) log
φp (z; Ω)

2φp (z; Ω) Φ (α′ω−1z)
dz = −E

[
log 2Φ

(
α′ω−1Z

)]
.

Taking into account that Z follows a multivariate Gaussian distribution, we obtain that Z = α′ω−1Z

is a univariate Gaussian random variable with variance α∗, which implies the result of the statement �

3.1. Local deviation index

The result in Proposition 1 provides quantitative insights on how to assess the effect of small
perturbations in asymmetry when we deal with multivariate Gaussian variables; it will be used to define
our local deviation measure. First of all, we show how we represent perturbations in asymmetry.
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In the multivariate SN model, departures from Gaussianity are regulated by the shape vector parameter
α. Hence, the effect of infinitesimal perturbations in asymmetry can be quantified by comparing the
distribution of a baseline p-dimensional vector Z such that Z ∼ Np(0,Ω) with the distribution of
a perturbed SN vector Zε such that Zε ∼ SNp(0,Ω, ε e), where e is a given direction driving the
asymmetry and ε is a perturbation factor such that ε ↓ 0. In this framework, it is well-known that the
KL divergence, as a function of ε, can be approximated around 0 by a quadratic function of the form aε2

[12]; it therefore stands to reason to define our index as follows.

Definition 2 (Local deviation index). Let Z be a Gaussian random vector with Z ∼ Np(0,Ω). For
every non-null direction e such that e′e = 1, let us consider a vector Zε such that Zε ∼ SNp(0,Ω, ε e)

with ε > 0. Then departures from Gaussianity in asymmetry can be locally quantified by

LD(e,Ω) = lim
ε↓0

DKL(Z,Zε)

ε2
. (6)

Note that measure (6) depends on the direction of asymmetry e and on the covariance matrix of
the underlying multivariate Gaussian model. Using the result of Proposition 1, the limit in (6) can be
calculated as follows:

LD(e,Ω) = lim
ε↓0

DKL(Z,Zε)

ε2
= − lim

ε↓0

∫ ∞
−∞

log 2Φ
(
ε
√

e′Ω̄e z
)

ε2
φ (z) dz.

After some simple calculus with the integral above, we get

LD(e,Ω) = − lim
ε↓0

∫ ∞
0

log
[
4
(

1− Φ
(
ε
√

e′Ω̄e z
))

Φ
(
ε
√

e′Ω̄e z
)]

ε2
φ (z) dz.

Furthermore, after successive applications of L’Hopital’s rule we obtain that the limit of the integrand
is

lim
ε↓0

log
[
4
(

1− Φ
(
ε
√

e′Ω̄e z
))

Φ
(
ε
√

e′Ω̄e z
)]

ε2
= −2z2e′Ω̄e

π
.

Hence,

LD(e,Ω) = lim
ε↓0

DKL(Z,Zε)

ε2
=

∫ ∞
0

2z2e′Ω̄e

π
φ (z) dz =

e′Ω̄e

π
. (7)

As we have already mentioned, [3] noted that the quantity e′Ω̄e is functionally related to Mardia’s
skewness and kurtosis indices in SN models, so it can be considered as a quantifier for regulating
departures from Gaussianity. The relation derived in (7) gives another way to interpret this quantity;
it turns out to be proportional to the limit rate of divergence from the underlying Gaussian model
when slight SN perturbations through the direction e are injected. Local perturbations in asymmetry
are described by a dissimilarity measure between distributions through KL divergence, so we argue that
the new way of interpreting e′Ω̄e provides an overall picture of what it really measures.
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Alternatively, we could have used the scalar δ2 = δ′Ω̄
−1
δ ∈ [0, 1) in (7), where δ = (1 +

e′Ω̄e)−1/2Ω̄e. Hence, LD(e,Ω) =
1

π

δ2

1− δ2
, from which we can obtain that δ2 =

πLD(e,Ω)

1 + πLD(e,Ω)
is a bounded non decreasing quantity of our local deviation index.

Example 1. Maximum LD for permutation-symmetric normal variables

In this example we are going to consider a vector Z belonging to the family of permutation-symmetric
normal variables [13], i.e. random variables having multivariate normal distribution with equal means,
equal variances and equal correlation coefficients. Therefore, the covariance matrix is given by

Ω =


σ2 ρσ2 · · · ρσ2

ρσ2 σ2 · · · ρσ2

...
... . . . ...

ρσ2 · · · ρσ2 σ2


with ρ > − 1

p−1 in order to have a positive definite matrix.
For the sake of simplicity we can assume that Z has a zero mean vector, σ2 = 1 and ρ > 0 since the

case ρ < 0 can be studied in a similar way using an argument based on the symmetry of the problem.
With these assumptions we obtain a correlation matrix Ω̄ = Ω with appealing properties: its largest
eigenvalue is λ1 = 1 + (p − 1)ρ, and the remaining eigenvalues are λ2 = . . . = λp = 1 − ρ; therefore,
the local deviation index can be bounded as follows

LD(e,Ω) =
e′Ω̄e

π
≤ e′1Ω̄e1

π
=

1 + (p− 1)ρ

π
,

where e1 is the normalized eigenvector e1=
1√
p
1p×1 corresponding to the largest eigenvalue λ1, with 1p×1

denoting a p-dimensional vector whose components are all equal to one.
Hence, vector e1 gives the direction yielding the maximum local deviation from Gaussianity. The

maximum is a non decreasing function of the dimension p and the correlation coefficient �

3.2. Relative local deviation index

The result derived in (7) gives a valuation of how the multivariate Gaussian distribution is deformed
by slight perturbations in the direction e. The maximum is obtained when moving through the first
principal component e1 of the correlation matrix Ω̄. This fact leads to the following natural measure for
quantifying relative local deviation (RLD) from Gaussianity.

Definition 3 (Relative local deviation index). Let Z be a Gaussian random vector such that Z ∼
Np(0,Ω) with correlation matrix Ω̄ = ω−1Ωω−1. For every non-null normalized direction e, the
relative local deviation from Gaussianity is measured by

RLD(e,Ω) =
e′Ω̄e

e′1Ω̄e1

, (8)

where e1 is the normalized eigenvector corresponding to the largest eigenvalue, λ1, of the correlation
matrix Ω̄.
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Figure 1. Plots of RLD against direction —angles θ ∈ [0, π]— for different correlations:
ρ = 0.9 (black solid curve), ρ = 0.5 (black dashed curve), ρ = 0.1 (black dotted curve) and
ρ = −0.9 (gray solid curve), ρ = −0.5 (gray dashed curve), ρ = −0.1 (gray dotted curve).
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When departures from Gaussianity are modeled in accordance to a SN normalized vector Z0, with
shape vector α such that e1 is proportional to α, we know that the principal components of Z0 are
independent and proportional to the components of its canonical transformation [8]. In addition, the
direction yielding the maximal skewness is proportional to e1, with all the multivariate skewness being
absorbed into this direction, and with the remaining canonical variates having null skewness [8]. Thus,
the denominator in (8) can be understood as the non Gaussianity index of the only skewed component in
the canonical transformation of Z0.

Example 2. RLD for bidimensional permutation-symmetric normal vectors

In this example we consider the class of permutation-symmetric normal vectors with p = 2. In this
case, the denominator in (8) corresponds to the maximum eigenvalue Ω̄, which is given by λ1 = 1 + ρ,
provided that ρ > 0. Hence, the RLD measure can be written as a function, RLD(θ), of the angle
between the direction e and the positive direction of x-axis, where 0 ≤ θ ≤ π. The black curves in
Figure 1 display this function for different non-negative correlation coefficients. As we have already
mentioned, the maximum RLD is attained at θ = π

4
with RLD(π

4
) = 1, while the minimum is attained

at θ = 3π
4

with RLD(3π
4

) = 1−ρ
1+ρ

. Gray plots for the RLD measure at the corresponding negative values
of ρ are also included. In this case, by the symmetry of our problem, we obtain that the minimum and
maximum are given by RLD(π

4
) = 1+ρ

1−ρ and RLD(3π
4

) = 1 respectively.
In Figure 1 we show several plots of the RLD index for different correlation coefficients. Observe

that when ρ > 0 the steepest increases of RLD from its minimum are obtained for the larger values of
the correlation. On the contrary, when ρ < 0 they occur for the smaller values. Thus, we conclude that
the largest ρ2 will yield the steepest increases in local sensitivity �
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4. Application to assess relative conditional sensitivity

In this section we apply the ideas we used to introduce the LD index in order to assess relative
sensitivity of conditional distributions. This issue has important implications in modeling continuous
multivariate data with GBN. These are graphical displays of the dependence structure of a set of Gaussian
variables with DAG, where the presence or absence of edges between the nodes represent conditional
dependence or independence of the variables in the model. As the specialized literature establishes, the
p-dimensional random vector can be partitioned as (Y,X) with X the set of observable or evidential
variables and Y the set of non-observable or interest variables; when some particular values of the
evidential variables are known, the conditional distribution Y|X has to be determined in order to update
our knowledge about Y. This inference procedure, termed evidence propagation, is computationally
tractable under Gaussianity as the exact conditional distributions are available. However, deviations
from Gaussianity may cause computational and interpretation problems. Therefore, an open problem is
to know if the output of the network is robust to slight perturbations in our model since this robustness
would allow using the well-behaved methods under Gaussianity when the actual model is not exactly
Gaussian. We propose to utilize multivariate SN distributions for modeling asymmetry deviations. With
this aim, we apply measure (7) from Definition 2 to introduce a Relative Conditional Sensitivity Measure
(RCSM) that will be used to evaluate the effect of slight perturbations in skewness on the conditional
distributions.

Our study of the relative sensitivity of conditional distributions to infinitesimal changes in the
symmetry of the joint density relies on KL divergence measure and the well-known chain rule:

DKL

(
f(Y,X), g(Y,X)

)
= EX

[
DKL

(
fY|X, gY|X

)]
+DKL (fX, gX) , (9)

where f(Y,X), fY|X and fX represent the joint, conditional and marginal densities of the reference
distribution and g(Y,X), gY|X and gX are the corresponding densities of the distribution to be compared.
As we are interested in assessing deviations from Gaussianity we take as reference, f , the density of a
Gaussian vector and g the density of the perturbed vector.

Some studies have assessed the local divergence of conditional distributions for different purposes.
In particular, [14] measured the local association of the random variable Y with a set of covariates at
X = x using an appropriate limit of the divergence between fY |X=x and fY |X=x+ε; a proposal to use
local divergence as a measure of association between random variables was also provided. Conditional
divergence measures were also utilized in the context of GBN to evaluate the sensitivity of model output
to parameter perturbations [15] as well as to assess the effect of deviations regulated by a kurtosis
parameter [1,16].

In view of relationship (9), an appropriate measure of relative conditional sensitivity can be defined
as follows.

Definition 4 (Relative Conditional Sensitivity Measure). Let (Y,X) be a p-dimensional random vector.
The relative conditional sensitivity measure of (Y,X) with reference density function f is given by

RCSM = lim
ε↓0

EX

[
DKL

(
fY|X, f

ε
Y|X

)]
DKL

(
f(Y,X), f ε(Y,X)

) = 1− lim
ε↓0

DKL (fX, f
ε
X)

DKL

(
f(Y,X), f ε(Y,X)

) , (10)
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with f ε denoting the corresponding joint, conditional and marginal densities associated with the
perturbation.

Under our assumptions it follows that expression (10) has a simple closed form, as we will show in
Proposition 5. Before presenting this result, we introduce some notation.

Let (Y,X) be a p-dimensional random vector following a Np(0,Ω) distribution and let (Yε,Xε) be
the perturbed random vector following a multivariate SNp(0,Ω, ε e) with e a fixed asymmetry direction,
and X and Xε (p − k)-dimensional vectors with k < p. Without loss of generality we can assume e

is a normalized vector. The scale matrix Ω, the correlation matrix Ω̄ and the diagonal matrix ω can be
partitioned as follows:

Ω =

(
ΩYY ΩYX

ΩXY ΩXX

)
, Ω̄ =

(
Ω̄YY Ω̄YX

Ω̄XY Ω̄XX

)
and ω =

(
ωY 0

0 ωX

)
.

Similarly, we have the partition e =

(
eY

eX

)
for the asymmetry direction with eε = ε e being the

perturbed direction and ε > 0 an infinitesimal perturbation factor.

Proposition 5. Let (Y,X) be a p-dimensional random vector following a Np(0,Ω) distribution, with
Y a k-dimensional random vector, k < p. Let us denote by (Yε,Xε) the perturbed random vector which
follows a multivariate SNp(0,Ω, ε e). Then the RCSM measure is given by

RCSM =
e′YΩ̄YY.XeY

e′Ω̄e
, (11)

where Ω̄YY.X = Ω̄YY − Ω̄YXΩ̄
−1
XXΩ̄XY is the Schur complement of the submatrix Ω̄XX in Ω̄.

Proof. Since (Yε,Xε) follows a multivariate SNp(0,Ω, ε e) distribution, it can be shown that Xε ∼

SNk

(
0,ΩXX, e

ε
X(Y)

)
, where the asymmetry direction eεX(Y) is given by eεX(Y) =

eεX + Ω̄
−1
XXΩ̄XYeεY√

1 + eε′YΩ̄YY.XeεY
[3]. Therefore, using a similar argument as in Proposition 1, we have

DKL (X,Xε) =

∫
Rp−k

φp−k (x; ΩXX) log

 φp−k (x; ΩXX)

2φp−k (x; ΩXX) Φ
(
eε′X(Y)ω

−1
X x
)
 dx

= −E
[
log 2Φ

(
eε′X(Y)ω

−1
X X

)]
with

eε′X(Y)ω
−1
X =

eε′Xω
−1
X + eε′YΩ̄YXΩ̄

−1
XXω

−1
X√

1 + eε′YΩ̄YY.XeεY
=

eε′Xω
−1
X + eε′Yω

−1
Y ΩYXΩ−1XX√

1 + eε′Yω
−1
Y ΩYY.Xω

−1
Y eεY

and X a (p− k)-dimensional Gaussian variable Np−k (0,ΩXX).
Now, if we consider the scalar variable T ε = eε′X(Y)ω

−1
X X then we know that T ε is a scalar Gaussian

variable whose variance is given by V [T ε] = eε′X(Y)ω
−1
X ΩXXeεX(Y)ω

−1
X = ε2

e′Ω̄e− e′YΩ̄YY.XeY

1 + ε2e′YΩ̄YY.XeY

.
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Therefore, DKL (X,Xε) can be written as

DKL (X,Xε) = −E

[
log 2Φ

(
ε

√
e′Ω̄e− e′YΩ̄YY.XeY

1 + ε2e′YΩ̄YY.XeY

)
Z

]
,

where Z is a standard Gaussian univariate variable.
Then, with similar calculations as in the limit of Proposition 1 we obtain

lim
ε↓0

DKL (X,Xε)

ε2
=

e′Ω̄e− e′YΩ̄YY.XeY

π
,

from which we get

RCSM = lim
ε↓0

EX

[
DKL

(
φY|X, φ

ε
Y|X

)]
DKL

(
φ(Y,X), φ

ε
(Y,X)

) = 1− lim
ε↓0

DKL (φX, φ
ε
X)

DKL

(
φ(Y,X), φ

ε
(Y,X)

)
= 1− e′Ω̄e− e′YΩ̄YY.XeY

e′Ω̄e
=

e′YΩ̄YY.XeY

e′Ω̄e
,

where φ and φε are obviously denoting the density functions of the Gaussian and perturbed vectors in
the different ways they are used. Thus, the proposition is proved �

In this setting it may be worthwhile finding the directions leading to the optimum of the RCSM index,
since they would be directions through which the impact of non Gaussianity attains a maximum or a
minimum. We can solve this issue by rewriting (11) as a generalized Rayleigh’s quotient as follows

RCSM =
e′Ω̄

∗
YY.Xe

e′Ω̄e
, (12)

where Ω̄∗YY.X =

(
Ω̄YY.X 0k×(p−k)

0(p−k)×k 0(p−k)×(p−k)

)
is an extended version of Ω̄YY.X with dimension p× p.

It is well known that the maximum and minimum of the quotient in expression (12) is given by the
maximum and minimum eigenvalues of the matrix Ω̄−1Ω̄∗YY.X. Taking into account the form of the
inverse of a matrix partitioned by blocks we obtain that

Ω̄−1Ω̄∗YY.X =

(
Ω̄−1YY.X −Ω̄−1YY.XΩ̄YXΩ̄

−1
XX

−Ω̄
−1
XXΩ̄XYΩ̄−1YY.X Ω̄

−1
XXΩ̄XYΩ̄−1YY.XΩ̄YXΩ̄

−1
XX + Ω̄

−1
XX

)
Ω̄∗YY.X

=

(
Ik×k 0k×(p−k)

−Ω̄−1XXΩ̄XY 0(p−k)×(p−k)

)
,

whose eigenvalues are given by λ1 = 1 and λ2 = 0 with multiplicities k and p− k respectively.
The eigenspace for the maximum eigenvalue λ1 = 1 is spanned by the columns of the matrix(

Ik×k

−Ω̄−1XXΩ̄XY

)
,

which in turn provide directions for which the effect of slight asymmetry perturbations on the conditional
distribution attains its maximum. On the other hand, the eigenspace associated with λ2 = 0 is the
(p− k)-dimensional kernel of the transform Ω̄−1Ω̄∗YY.X, spanned by the columns of the matrix
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(
0k×(p−k)

I(p−k)×(p−k)

)
,

which corresponds to the directions of the conditioning variables.
We apply our results to the distributions of Example 1.

Example 3. Maximum RCSM for permutation-symmetric normal vectors

In this example we study the RCSM index for the class of permutation-symmetric normal variables
so we use the same notation and restrictions of Example 1. The multivariate vector is partitioned in
subvectors with dimensions k and p− k, so we obtain that

Ω̄−1XX =

 1 · · · ρ
... . . . ...
ρ · · · 1


−1

(p−k)×(p−k)

=
1

(1− ρ) [1 + ρ (p− k − 1)]


 1 −ρ · · · −ρ

...
... . . . ...

−ρ · · · −ρ 1

+ ρ(p− k − 2)Ip−k


which multiplied by

Ω̄XY =

 ρ ρ · · · ρ
...

... . . . ...
ρ · · · ρ ρ


(p−k)×k

gives −Ω̄−1XXΩ̄XY = − ρ

1 + ρ (p− k − 1)
1(p−k)×k, where 1(p−k)×k denotes a (p− k)× k matrix with all

the entries equal to one. Consequently,

Ω̄−1Ω̄∗YY.X =

(
Ik 0k×(p−k)

− ρ
1+ρ(p−k−1)1(p−k)×k 0(p−k)×(p−k)

)
.

Therefore, a direction where a perturbation in asymmetry produces the maximum relative local effect

on the conditional distribution is emax=

(
eY

eX

)
with

eY =


1

0
...
0


k×1

, eX = − ρ

1 + ρ (p− k − 1)
1(p−k)×1.

Example 4. Maximum RCSM for bidimensional permutation-symmetric normal vectors
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Figure 2. Plots of RCSM against direction —angles θ ∈ [0, π]— for different correlations:
ρ = 0.9 (black solid curve), ρ = 0.5 (black dashed curve), ρ = 0.1 (black dotted curve) and
ρ = −0.9 (gray solid curve), ρ = −0.5 (gray dashed curve), ρ = −0.1 (gray dotted curve).
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A particular simple but enlightening case is obtained when p = 2 with vector (Y,X) and conditioning
variable X . Now, the normalized eigenvector associated with the highest eigenvalue λ1 = 1 is

emax=

(
1/
√

1 + ρ2

−ρ/
√

1 + ρ2

)
, which gives the direction where perturbations have the highest impact on the

conditional distribution. On the other hand, the minimum impact, or equivalently the maximum impact

on the marginal univariate conditioning distribution, is obtained through the direction emin=

(
0

1

)
.

In Figure 2 we have plots of RCSM for different values of the correlation coefficient. Since the
minimum RCSM is attained in the direction emin all the curves intersect at angle θ = π

2
. Furthermore,

the angle that provides the direction with maximum RCSM is functionally related to the correlation
coefficient by θ = π − arctan(ρ) when 0 < ρ ≤ 1 and by θ = − arctan(ρ) when −1 ≤ ρ < 0.
Note that when both components of the vectors are linearly dependent, with ρ = −1 or ρ = 1, the
directions yielding the maximum RCSM are given by the angles θ = π

4
and θ = 3π

4
respectively —see

their positions at the vertical lines of Figure 2. They are also the directions with the minimum RLD, as
was shown in Example 2. This fact is explained by the perfect linear correlation between both variables
�

5. Conclusions

In this paper we use the Kullback-Leibler (KL) divergence to introduce local deviation (LD) and
relative local deviation (RLD) indices designed to assess the effect slight departures from Gaussianity,
due to asymmetry, have on the joint distribution of a multivariate vector; the asymmetry is regulated by
the family of SN distributions. We have studied the relationship between Mardia and Malkovich-Afifi’s
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measures of skewness and the LD index, and have also proved the existence of a monotone relation
between these measures and the latter; their connection is described by the slant parameter α∗ = α′Ω̄α

[3]. This fact has also provided new insights about how α∗ can be interpreted as an indicator that
encapsulates the non Gaussianity in the SN model.

We have also studied the local effect of asymmetry in the conditional distribution of a block of
variables conditioned on the others, as well as the local effect on the marginal distribution of the
conditioning variables. With this aim, we have proposed a relative conditional sensitivity measure,
RCSM, that evaluates such effects. Its simple closed form as a Rayleigh’s quotient allows us to determine
the directions of asymmetry for which slight perturbations lead to the highest impact on the conditional
distribution; this finding has important practical implications in statistical learning and data analysis
procedures that assume the multivariate Gaussianity as a starting hypothesis. In particular, for GBN we
can select the partition of the network variables leading to outputs with minimal impact for perturbations
of the joint distribution. Then, we can use direct results to propagate evidence in GBN even when the
symmetry assumption is not realistic.
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