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Abstract: In the past there has been an extensive work on generalized entropies
and generalized channel capacities. One of the first was Daróczy, who introduced new
parameterized generalization of Shannon entropy, which reduces to the Shannon case if the
parameter is set to one. A variant of this entropy, with a different normalization constant,
was later proposed by Tsallis, who set it up as a basis for non-extensive statistical mechanics.
Based on the generalized entropy, Daróczy introduced generalized mutual information which
shares several important properties with the Shannon case, such as symmetry with respect
to input/output channel distributions, non-negativity (if the parameter is greater than one)
and obeying the chain rule. Daróczy also introduced a generalized channel capacity as the
maximum of the generalized mutual information and derived expressions for the capacities
of symmetric channel and binary symmetric channel as a special case. In this paper we
provide new expressions for Daróczy capacities of weakly symmetric channel, binary erasure
channel and z-channel, extending the previous work by Daróczy. Similarly to the Shannon
case, the capacity of weakly symmetric channel is expressed as the source entropy reduced
by the entropy of the transition matrix row (scaled by appropriate constant), capacity of
binary erasure channel is expressed as the q-average number of bits which can be recovered
after transmission, while the capacity of z-channel is expressed in terms of q-logarithm and
q-exponential of generalized binary entropy function. All the expressions are general and
can be directly applied to Tsallis entropy, reducing to the Shannon capacity results in a limit
case, when the parameter tends to one.

Keywords: Daróczy entropy; Tsallis entropy; channel capacity; weakly symmetric channel;
binary erasure channel; z-channel.
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1. Introduction

Shannon entropy follows the composition rule by which the entropy of a joint system can be
represented as the sum of the entropy of one system and the conditional entropy of another, with respect
to the first one. In the past, there was extensive work on paremeterized generalization of Shannon
entropy, Daróczy-Tsallis entropies [1], [2], which follow more general q-addition rule [3] and reduce to
the Shannon entropy if the parameter q is set to 1.

Daróczy-Tsallis entropies has successfully been used in a number of different fields, such as physics,
chemistry, biology, economics, linguistics, medicine, cognitive sciences, computer sciences and social
sciences [4], and have also been widely studied in information theory. Fundamental results such as
Shannon-Khinchin axioms [5],[6], source coding theorems [7], rate-distortion theory [8], Fano’s and
data processing inequalities [9] has been established for the generalzied case. A generalized channel
capacity have also been introduced and anylized by Daróczy [1], and revisited later by Landsberg and
Vedral [10] (Tsallis entropy case), but only for binary symmetric channel.

In this paper we provide new expressions for Daróczy-Tsallis capacities of weakly symmetric channel,
binary erasure channel and z-channel, extending the previous work from [1] and [10]. Similarly to the
Shannon case, the capacity of weakly symmetric channel is expressed as the source entropy reduced
by the entropy of the transition matrix row (scaled by appropriate constant), capacity of binary erasure
channel is expressed as the q-average number of bits which can be recovered after transmission, while the
capacity of z-channel is expressed in terms of q-logarithm and q-exponential [9] of generalized binary
entropy function.

The paper is organized as follows. In Section 2 we introduce the basic definitions and equalities
for Daróczy-Tsallis entropy. The Daróczy-Tsallis capacity is introduced in section 3 and the channel
capacity formula for weakly symmetric channel is derived in section 4. The Daróczy-Tsallis capacities
of binary erasure channel and z-channel are derived in sections 5 and 6, respectively.

2. Daróczy-Tsallis entropy

Let ∆n be the n-dimensional simplex,

∆n ≡

{
(p1, . . . , pn)

∣∣∣ pi ≥ 0,
n∑
i=1

pi = 1

}
(1)

and let R+ denote the set of positive real numbers.
Daróczy-Tsallis entropy of a distribution P = (p1, . . . , pn) ∈ ∆n is defined with

Hq(P ) =


−k

n∑
i=1

pi log2 pi, q = 1∑n
i=1 p

q
i − 1

φ(q)
, q 6= 1

(2)
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where φ(q) satisfies the following properties i)-iii):

i) φ(q) is continuous and has the same sign as 1− q;

ii) limq→1 φ(q) = 0 and φ(q) 6= 0 for q 6= 1;

iii) φ(q) is differentiable in q = 1 and

φ′(1) = − ln 2

k
. (3)

Remark 2.1. Daróczy-Tsallis entropy reduces to Tsallis entropy [2], for φ(q) = 1 − q, and to Daróczy
entropy [1], for q = 21−q − 1.

A PQ = (r11, r12, . . . , rnm) ∈ ∆nm is called joint distribution of P = (p1, . . . , pn) ∈ ∆n and
Q = (p1, . . . , pm) ∈ ∆m (n,m ∈ N, n,m > 1) if pi =

∑m
j=1 rij and qi =

∑n
i=1 rij . We define the joint

entropy of P and Q as
Hq(P,Q) = Hq(PQ) (4)

For a conditional distribution Q|k = (q1|k, . . . , qm|k) ∈ ∆m, where qi|k = rik/pk, pk > 0(k = 1, . . . , n),
we define the conditional entropy of Q for a given P as

Hq(Q|P ) =
∑
k

pqk Hq(Q|k). (5)

Daróczy-Tsallis entropy has the following properties (for all n ∈ N+):

[SA1] Hq is continuous in ∆n and with respect to q for all q ∈ R+;

[SA2] Hq takes its largest value for the uniform distribution, Un = (1/n, . . . , 1/n) ∈ ∆n, i.e. Hq(P ) ≤
Hq(Un), for any P ∈ ∆n;

[SA3] Hq is expandable: Hq(p1, p2, . . . , pn, 0) = Hq(p1, p2, . . . , pn) for all (p1, . . . , pn) ∈ ∆n;

[SA4] Hq follows the chain rule, or all P ∈ ∆n, Q ∈ ∆m,

Hq(P,Q) = Hq(P ) +Hq(Q|P ), (6)

[SA5] Hq is symmetric: Hq(p1, . . . , pn) = Hq((pπ(1), . . . , pπ(n))), for any π is a permutation π of
{1, . . . , n}, and all (p1, . . . , pn) ∈ ∆n

Note that form the symmetry and the chain rule we have directly:

Hq(P,Q) = Hq(P ) +Hq(Q|P )

= Hq(Q) +Hq(P |Q) = Hq(Q,P ). (7)

The properties [SA1] to [SA4] are refereed as generalized Shannon-Khinchin axioms. In [5], [6], it is
shown that uniquely determines Daróczy-Tsallis entropy. In the following text we will fix the constant k
to 1.
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3. Daróczy-Tsallis channel capacity

A discrete constant channel with the space X = {x1, . . . , xn} of input symbols and with the space
Y = {y1, . . . , yn} of output symbols is characterized by the (m×n) transition matrix, Q̃, with conditional
probabilities Q|̇k = (q1|k, . . . , qm|k),

∑m
j=1 qj|k = 1, for k = 1, . . . , n, as rows:

Q̃ = [qj|i]n×m =


QT
|1
...
QT
|n

 (8)

where

Q|̇k =

 q1|k
...

qm|k

 , m∑
j=1

qj|k = 1 (9)

If X is distributed according to P = (p1, . . . , pn), than the output distribution Q = (q1, . . . , qm) is given
by scalar products qk = QT

|̇k
· P , k = 1, . . . ,m, where Q|̇k and P are taken as vectors, and

Q = Q̃T · P (10)

The joint distribution PQ can be obtained as

PQ = [rij]n×m =


p1 ·QT

|1
...

pn ·QT
|n

 (11)

If qk > 0 (k = 1, . . . ,m), we can define the inverse transition matrix is given with

P̃ =


P T
|1
...
P T
|n

 =


PQT:,1
q1
...

PQT:,m
qm

 ; (12)

where PQ:,k stands for k-th column of PQ:

PQ:,j =

 r1j

...
r1m

 (13)

The generalized mutual information between X and Y is denoted as Iq(P,Q) and defined as

Iq(P,Q) = H(P ) +H(Q)−H(P,Q)

= Hq(Q)−Hq(Q|P ) = Hq(P )−Hq(P |Q). (14)

Two following theorems represents the basic properties of the q mutual information.

Theorem 3.1. For q ≥ 1, I(P,Q) ≥ 0.
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Proof. By repeating steps from Theorem 7 in [1].

Theorem 3.2. For q ≥ 1 and fixed Q|k, k = 1, . . . , n, the generalized mutual information Iq(P,Q) is
concave function of P .

Proof. The mutual information can be represented as

Iq(P,Q) = H(Q)−H(Q|P ) (15)

If fixed Q|k, k = 1, . . . , n, then pi is linear function of Q. Thus, Hq(Q) which is a concave function of
Q, is concave function of pi. On the other side, for q ≥ 1,

H(Q|P ) =
n∑
i=1

pqi Hq(Q|i) (16)

is convex function of pi and −H(Q|P ) is concave, so that I(P,Q) concave since it is represented as a
sum of concave functions.

In the case q < 1 the mutual information can take negative values for a choice of P and Q|k which
can be treated as negative information transfer between P and Q [10]. Moreover, for q < 1 the mutual
information is not necessary concave which makes problem with the definition of the generalized channel
capacity . For these reasons, we restrict the definition of the mutual information to the case q ≥ 1.

Daróczy-Tsallis channel capacity is defined as a maximum mutual information which can be conveyed
between X and Y , where the maximum is taken with respect to the input distribution P :

Cq = max
P

Iq(P,Q); q ≥ 1. (17)

In this paper, we derive the expressions for the channel capacities of some common discrete channels.

4. Daróczy-Tsallis capacity of weakly symmetric channel

Definition 4.1. A channel is said to be symmetric if the rows of the channel transition matrix t(i) are
permutations of each other, Q|k = (qπ(1), . . . , qπ(n)), and the columns are permutations of each other. A
channel is said to be weakly symmetric if every row of the transition matrix is a permutation of every
other row and all the column sums

∑n
i=1 aij are equal.

Since all rows are permutations of each other, due to the symmetry property Hq(Q|k) = Hq(Q|1) for
all k = 1, . . . , n so that

Hq(Q|P ) =
∑
k

pqk Hq(Q|k) = Hq(Q|1) ·
∑
k

pqk. (18)

Now, due to the maximality property, mutual information satisfies the following:

Iq(P,Q) = Hq(Q)−Hq(Q|P ) = Hq(Q)−Hq(Q|1) ·
∑
k

pqk ≤ Hq(Un)−Hq(Q|1) ·
∑
k

pqk (19)
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By the convexity of tq(q > 1), we obtain

n∑
i=1

pqi ≥ n
( 1

n

n∑
i=1

pqi

)q
= n1−q (20)

so that
Iq(P,Q) ≤ Hq(Un)−Hq(Q|1) · n1−q (21)

The equality is achieved for uniform input distribution P = (1/n, . . . , 1/n) since column sums are
equal,

∑m
j=1 aij = c, so that Q = AT · P = (c/n, . . . , c/n) is uniform, and we have the

Cq = max
P∈∆n

Iq(P,Q) =
n1−q − 1

φ(q)
−Hq(Q|1) · n1−q (22)

Example 4.1. If the transition matrix of a discrete constant channel has the form [1]

qki =

1− p if i = k
p

n− 1
if i 6= k

(n = m) (23)

for q 6= 1, we have:

Hq(Q|1) =
n1−q((1− p)q + (n− 1)1−qpq − 1)

φ(q)
(24)

and the channel capacity (28) reads

Cq =
n1−q − 1− n1−q[(1− p)q + pq(n− 1)1−q − 1]

φ(q)
(25)

Let us chose the function φ(q) so that Cq scales to 1 for p = 0 and binary symmetric channel (case
n = 2). Then, φ(q) = 21−q − 1 and the result reduces to the theorem proven by Daróczy [1]

4.1. Daróczy-Tsallis capacity of binary symmetric channel

The binary symmetric channel (BSC) is a weakly symmetric channel represented by two dimensional
transition matrix:

Q̃ =

[
Q|1

Q|2

]
=

[
α 1− α

1− α α

]
(26)

If we define binary Daróczy-Tsallis entropy function as:

hq(x) = Hq(x, 1− x) =
xq + (1− x)q − 1

φ(q)
. (27)

Daróczy-Tsallis entropy capacity can be represented as:

Cq =
21−q − 1

φ(q)
− 21−q · hq(α). (28)

In the limit case
lim
q→1

Cq = 1− h(α), (29)
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Figure 1. Cq as a function of transition probability p and parameter q for BSC
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which agrees with [11].
If chose the function φ(q) = 21−q − 1 so that Cq scales to 1 for α = 0 , the BCS capacity reduces to

Cq = 1− [1− (1− α)q − αq]
2q−1 − 1

(30)

In Fig. 1 we show the Cq dependence on p on BSC for different values of q.

5. Daróczy-Tsallis capacity of binary erasure channel

Binary erasure channel is two input-tree output channel described by the transition matrix:

Q̃ =

[
Q|1

Q|2

]
=

[
1− α α 0

0 α 1− α

]
(31)

If P = (p, 1− p), then Q = ((1− α)p, α, (1− α)(1− p)),

P̃ =

 P|1

P|2

P|3

 =

 1 0

p 1− p
0 1

 (32)

so that Hq(P|1) = Hq(P|3) = 0 and Hq(P|2) = hq(p), so that we have

Hq(P |Q) = αqHq(P|2) = αqhq(p)

On the other side Hq(P ) = hq(p), so that the mutual information is given by

Iq(P,Q) = Hq(P )−Hq(P |Q) = (1− αq) hq(p)



Entropy 2015, xx 8

Figure 2. Cq as a function of transition probability α and parameter q for BEC
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and is maximized for uniform distribution p = 1/2, so that

Cq = max
P∈∆2

Iq(P,Q) = (1− αq) 21−q − 1

φ(q)
(33)

In the limit case
lim
q→1

Cq = 1− α, (34)

which agrees with [11]. In the case of Havrda-Charvat entropy φ(q) = 21−q−1, channel capacity reduces
to

Cq = 1− αq (35)

which can be interpreted in a similar way like for the Shannon case [11]. Let X be a random variable
taking 1 if a bit is lost during the transmission and 0 if a correct bit is transmitted. The probability
that the bit will be lost is then P (X = 1) = α and the q average number of lost bits is given with
P (X = 0)q · 0 + P (X = 1)q · 1 = αq. In accordance Cq stands for the q-average number of bits which
can be recovered. The Cq dependence on α and q for BEC, is given in Fig. 2.

6. Daróczy-Tsallis capacity of z-channel

The z-channel two input-two output channel described by the transition matrix:

Q̃ =

[
Q|1

Q|2

]
=

[
1 0

1− α α

]
(36)

If P = (1− p, p), then Q = (1− αp, αp), so that Hq(Q) = hq(αp). On the other side, Hq(Q|1) = 0 and
Hq(Q|2) = hq(α) and we have

Iq(P,Q) = Hq(Q)−Hq(Q|P ) = hq(αp)− pqhq(α)
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The optimal p can be found by taking the derivative of Iq(P,Q) and equating it to zero. If we introduce
q-exponential,

eq(x) =


2x; if q = 1,

[1 + φ(x)x]
1

1−q ; if q 6= 1 and 1 + (1− q)x > 0,

0; if q 6= 1 and 1 + (1− q)x ≤ 0,

(37)

the optimal distribution can expressed as

(αp)−1 = 1 + eq

(
−hq(α)

αq

)−1

; (38)

If we introduce q-logarithm, which is the inverse function of eq,

Logq(x) =


log2(x); if q = 1

x1−q − 1

φ(q)
; if q 6= 1

; x ≥ 0

we further have

pqhq(α) = −
logq

(
eq

(
−hq(α)

αq

))
(αp)−q

=

1− eq

(
−hq(α)

αq

)1−q

φ(q)

(
1 + eq

(
−hq(α)

αq

)−1
)q (39)

On the other side:

hq(αp) =
(1 + ((αp)−1 − 1)q − (αp)−q)

φ(q) (αp)−q

=

1 + eq

(
−hq(α)

αq

)−q
−

(
1 + eq

(
−hq(α)

αq

)−1
)q

φ(q)

(
1 + eq

(
−hq(α)

αq

)−1
)q (40)

Then, the Cq can be expressed as

Cq =

eq

(
−hq(α)

αq

)−q
− eq

(
−hq(α)

αq

)1−q

φ(q)

(
1 + eq

(
−hq(α)

αq

)−1
)q

−

(
1 + eq

(
−hq(α)

αq

)−1
)q

φ(q)

(
1 + eq

(
−hq(α)

αq

)−1
)q

(41)
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Figure 3. Cq as a function of transition probability α and parameter q for z-channel
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and we have

Cq =

eq

(
−hq(α)

αq

)1−q
(

1 + eq

(
−hq(α)

αq

)−1
)1−q

− 1

φ(q)
(42)

and finally

Cq = Logq

(
1 + eq

(
−hq(α)

αq

))
(43)

In the limit case
lim
q→1

Cq = log2

(
1 + 2−

h(α)
α

)
(44)

which agrees with [11]. The Cq dependence on α and q for z-channel (with φ(q) = 21−q − 1), is given
in Fig. 3.

7. Conclusions

New expressions for Daróczy-Tsallis capacities of weakly symmetric channel, binary erasure channel
and z-channel, were derived, which is extends the previous work by Daróczy. We shown that, similarly
to the Shannon case, the capacity of weakly symmetric channel can be expressed as the source entropy
reduced by the entropy of the transition matrix row (scaled by appropriate constant), capacity of
binary erasure channel can be expressed as the q-average number of bits which can be recovered after
transmission, while the capacity of z-channel can be expressed in terms of q-logarithm and q-exponential
of generalized binary entropy function. All the expressions were derived in general way so that they can
be directly applied to Tsallis entropy, reducing to the Shannon capacity results in a limit case.
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