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Abstract: Synergy is phenomenon found everywhere in nature at all levels of organization 

in physics, chemistry, biology, social sciences, and the arts. The English Wikipedia defines 

Synergy as "the creation of a whole that is greater than the simple sum of its parts. The 

term synergy comes from the Attic Greek word συνεργία synergia from synergos, 

συνεργός, meaning working together".  Synergy is an important concept that is difficult to 

define precisely and even more difficult to quantify. Entropy on the other hand has been 

used as a way to measure order or complexity. Here we explore the changes in entropy 

induced by diverse process described as synergistic. The paper uses seven examples 

reported in the literature to quantify synergy in different settings. The result shows that 

synergistic processes are associated to large decreases in entropy and slightly less large 

increases in work output of the system where they occur. Systems which suffer changes in 

entropy that are not associated to synergistic processes show a different pattern These 

results open the door to use entropy measures to identify and classify synergistic processes. 
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1. Introduction 

No unambiguous definition of synergy exists, but most non-additive phenomena might qualify as 

synergy. Wikipedia defines it as the creation of a whole that is greater than the simple sum of its parts. 

That is, 1+1 > 2. This phenomena seems to be quite common everywhere (Corning 1983, Jaffe 2015) 

but a precise way of tackling the study of this phenomena has jet to be developed. For example, the 

transformation of oxygen and hydrogen atoms to for a molecule of water has often been presented as a 

synergistic process. Certainly, the properties of water cannot be deduced from those of oxygen and 

hydrogen atoms: they differ radically. It seems a clear cut case of 1+1 <> 2. The advent of quantum 

chemistry has allowed us to understand this phenomena in great detail, making the reference to 
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synergy unnecessary. Thus, the presence of synergy in natural phenomena might just reveal our 

ignorance about them.  

In thermodynamic, chemical reactions have properties that relate to its complexity. Quantitative 

measurements of Helmholtz free energy and Gibbs free energy or enthalpy have shown to be very 

useful in understanding chemical reactions. A similar approach should help us understanding synergy 

in complex systems. This can be done my measuring changes in the complexity of the system triggered 

by a given synergistic process. One way of estimating complexity is by measuring or estimating the 

entropy of the system. 

The great advantage of science over other heuristic protocols is the use of empirical methods (Jaffe 

2010). Here we want to explore examples where an empirical and quantitative approach to the study of 

synergy is possible. In all of them, the concept of Shannon's entropy is fundamental in understanding 

the emergence of synergy. In information theory, Shannon entropy is the expected value (average) of 

the information contained in each message or structure that contains information. The entropy of the 

message is its amount of uncertainty; it increases when the message is closer to random, and decreases 

when it is less than random. Named after Boltzmann's H-theorem, Shannon defined the entropy Η of a 

discrete random variable x as: 

H(x) = ∑i P(xi) logb P(xi) 

where b is the base of the logarithm used, and P a probability function of states. 

H is often related to the complexity of a system. The lower H the more complex structure the 

system possesses. The assessment of complexity depends on how it is regarded. If complexity C is 

regarded as the effort needed to make a description of the system, then it can be measured as 

Shannon's (1951) information entropy H. Since a description's entropy depends on the suitability of the 

language or metric used for that specific description, Kolmogorov (1965) stated that complexity equals 

the information needed assuming the language or metric used is the best suited for the description. Not 

being able to ensure we are using the best description, we have to be content with estimating 

Kolmogorov's complexity KC by using Shannon's information entropy. Thus KC ≈ H. 

Complexity can also be regarded as the effort needed to describe the internal activity the system has 

to perform in order to keep itself structured and under control, and at least temporarily achieve the 

objective of limiting the natural and inexorable tendency of its entropy to increase. A way to asses this 

estimation of complexity is to contrast the Kolmogorov's complexity KC of the system with the 

'distance' the system places itself from total disorder, which is 1-KC.  

2. Methods 

As H can be calculated or estimated quantitatively, here we relate measures of H to seven processes 

where synergy is known to be acting and where the relevant data for calculating H is available. We 

compare H in two states, before (H1) and after (H2 ) the synergistic process using a ratio Rho (P), and 

estimate the rate of change from state 1 to state 2. This unit free scalar was called the Rho of H and 

calculated as Ρ(H) = H2/H1. A mirror scalar called P(N) was the unit free quantity transformed to a 

scalar related to negentropy so that P(N) = 1/P(H).  

Estimates of work output or efficiency of a parameter that relates to the quantity or quality of the 

output were calculated for each example. These values were used to calculate the ratio Rho by dividing 



the values associated with the lowest entropy in the final state after the  synergistic process occurred by 

those associated with the highest entropy before the synergistic process started. We called this ratio P(W).  

A summary of the data is presented in Table 6. 

3. Results 

3.1. Social complexity and minimal cost of maintenance of society (Data taken from Jaffe & Hebling-
Beraldo 1993) 

Living in society must have benefits for the inhabitants if societies are to be sustainable. That is, 

social synergy allows social organisms to be more efficient in resource use than non-social ones. Data 

measuring the efficiency of energy consumption in ant societies of different social complexity and size 

are available. The study used here finds that ant species with higher polymorphisms (i.e. larger number 

of morphological distinct worker castes) have a lower per capita energy requirement for workers. 

Specifically, among ants in the family Formicinae species with 1 worker caste consume on average 

about 1.1 more energy than ant species with 2 worker castes. Among Myrmicinae the relationship is 

1.7 times, and among Attini (leaf-cutter ants) with Atta species having >2 castes, the proportion is at 

least 2. This gradation corresponds well with the difference in social complexity of monomorphic and 

polymorphic ant societies among these three groups of ants. If P(H) is calculated just using the number 

of castes (1 and 2), a great underestimation of real complexity of these ant societies, we have that 

Shannon entropy of the society decreases at least by half. That is, P(N) = 2 ; whereas the Rho P(W) for 

work output,  as estimated for Myrmicinae's increase in energy efficiency with increased number of 

castes was 1.7. 

3.2. Size of social aggregates and social synergy (Data taken from Jaffe 2010) 

Larger cities are more efficient in their use of energy than smaller ones. The exponent by which per 

capita consumption of electricity diminishes according to the number of inhabitants a city hosts varies 

from -0.47 in Brazil of -0.18 in Denmark. If we accept that heterogeneity in quality of services in 

Brazil is much higher than in Denmark, and that smaller rural towns have less services than larger 

metropolis in Brazil, we can assume the proportionality exponents is related to the difference in 

complexity of large and small cities. That is, in Brazil cities are 2.6 times more heterogeneous 

regarding complexity of services than those in Denmark. Among ant societies, these difference is at 

least 4.6 times. Here we assume that this difference is a proxy of 1/H. 

3.3. Science, Economics and Social Synergy (Data taken from Jaffe et al. 2013a,b and Jaffe, Rios, 
Florez 2013a).  

The complexity of an economy and of a scientific community can be calculated with great accuracy. 

But both have to be calculated differently. Economic Complexity (Hausmann 2011) Table 1 shows the 

relationship between different ways of calculating complexity of the knowledge of a society with 

Economic Complexity (ECI) as calculated by Hausmann et al (2011) and Economic Growth as 

calculated by the World Bank as Gross Domestic Product per capita (GDPc). The knowledge of a 

society can be calculated as ECI, as academic publications per capita and as a scientific complexity 

index (SCI) calculated in the sane way as ECI but using academic publications as output rather than 

exports of products as in ECI (Jaffe et al 2013a). Another index that showed to be related to the 



sophistication of a scientific community is the Revealed Comparative Advantages or RCA (Laursen 

1998). Specifically RCS in Neuroscience (Jaffe et al 2013b). 

Table 1. Correlation coefficients between scientific publications / capita; Science 

Complexity Index; Economic Complexity Index and Revealed Comparative Advantages of 

Neurociences with the Economic Complexity Index  and Gross National Product per capita 

of nations in 2010 

Spearman 
correlations

ECI 2008 GDPc 2010 

Publications / 
capita

0.79 0.9

SCI 2010 -0.06 0.1

ECI 2008 - 0.75

RCA 2010 
Neuroscience

0.68 0.72
 

Table 1 shows that the index for knowledge complexity that best correlate with economic growth is 

Publications/capita. The log of this value as reported in the mentioned paper ranged between -2.5 and 

0.6 (P(N) = 3.1), whereas the log of GDPc ranged between 2.4 and 5.0 (P(W) = 2.6). That is the ratio 

was >2 in both cases. We can thus relate P(W) estimated as the ratio of the extremes in GDP, and P(H) 

as the ratio of the extremes of scientific complexity or complexity of knowledge managed by the 

society. 

3.4. Division of labor and the invisible hand (Jaffe 2015).  

In simulations of economic markets exploited by societies of agents using Sociodynamica, the 

amount of resources a society without division of labor could accumulate was 8 units, compared to 63 

units accumulated by societies with division of labor into 3 discrete categories (miners, farmers and 

traders). Thus, a P(N)= 3 achieved economic gains of  7.8 times which makes P (W) = log(63)/log(8) = 

2.96. This result was used as a clear demonstration that division of labor allows for synergistic 

interactions of agents which allow economic markets to work efficiently, triggering economic growth. 

This example is considered as a classical example of the working of synergy. 

3.5. Brain complexity and social synergy (Jaffe & Perez 1989).  

Brain complexity might be thought is an adaptive feature to allow for complex cognitive task in 

their bearers. If more complex societies require more complex tasks from their participating 

individuals, we would expect a relationship between bran complexity and complexity of the society the 

individuals form. Even a synergistic relationship might exist. Data from ant societies however reveal a 

different result (Table 2) 



Table 2. Various indicators of brain complexity for workers of different ant species 

showing a variety of social complexity 

Ant species Asymmetry between 
internal and external 

calyxes

Total surface 
of folding of 

the calyx

Social complexity 
estimated with 
polymorphism

Estimated 
average 

colony size

Odontomachus 
bauri

2 80 1.1 500

Trachymyrmex 
urichi

7 88 1.2 1000

Acromyrmex 
rugosus

13 100 1.5 5000

Acromyrmex 
octospinosus

23 128 2 100000

Atta laevigata 32 90 3 500000

 
In some cases, as the overall surface of a brain structure called the Calyx, This relationship is 

concave with a maximum value in species with an intermediate level of social complexity such as 

Acromyrmex octospinosus. In the most socially complex society studied, Atta laevigata, individuals 

showed a lower index of overall surface of the calyx. This relationship might suggest that socially very 

complex societies require cognitive less developed individuals.  

The asymmetry between the two calyxes, however, was related positively and continually with 

social complexity, This parameters is related to the complexity of the brain rather than to its total 

capacity. We choose this last index to make P(N) estimates. The rate P(N) between the minimum and 

maximum value of this index was 16 or in entropy scalars log(16) = 4 

Estimates of work output P(W) were two. The degree of worker caste polymorphism, and the 

estimated size of the average colony in a log scale. Each of these two different estimates of social 

complexity are related to the complexity of the information content the society has to manage. The 

ratio P (W) between maximum and minimum vales for each of them was 2.7 and 3 respectively  

3.6. Synergies and language (Febres, Jaffe, Gershenson 2014 and Febres & Jaffe 2015).  

Languages can be regarded as systems formed by large number of symbols and rules. For natural 

languages, even though there are other options, words can play the role of symbols. As a message 

written in a natural language is more organized, the entropy of the message reduces making it prone 

for a better understanding and therefore more effective as an information transmission process. We 

measured the entropy based on the word frequency of speeches written in English and Spanish. 

Assuming that those writers who won the literature Nobel Prize are masters of the use of natural 

languages, we compared the entropy computed for their speeches with the entropy computed for the 

speeches of non-Nobel writers. We also considered the readability index RES (Flesch 1951) of English 

texts as possible reflex of synergy. For Spanish texts we evaluated the readability using the perspicuity 

index IPSZ (Szigriszt-Pazos 1993). The result of this figures is shown in Table 3. 



Table 3. Entropy H, Spanish perspicuity index IPSZ and English Readability index RES 

for groups of speeches written by Nobel laureates and non- Nobel writers. 

Group
Language H IPSZ RES

Literature Nobel Laureates
Spanish (19 speeches) 0.8302 63.4
English (37 speeches) 0.7880 56.9

Non-Nobel
Spanish (117 speeches) 0.8518 60.6
English (101 speeches) 0.8381 61.0  

There is a clear difference between the entropy of the Nobel laureate speeches and the non-Nobel 

speeches. This difference suggests that the more effective structure reached by master writers can be 

recognized by the ratio of entropies. This behavior is consistent for Spanish and English. In English, 

the P(N) is about 1.06 and in Spanish about 1.02 

On the other hand, the change of readability index between Nobel writers and non-Nobel does not 

follow the same direction in Spanish and English; while in Spanish the presumably better use of the 

written language performed by Nobel laureates could be associated with a higher IPSZ, P(W)  = 1.05. 

The same change does not show for RES index in English which showed a P(W) based on RES of 0.93 

3.7. Music and entropy (Febres & Jaffé 2016).  

Why we are delighted by music remains a mystery and an old subject for discussion. Perhaps it is 

due to the sound patterns we find in it, that we like music. If so, then the degree of understanding -

predictability- of those patterns should be a source of pleasure and therefore the organization of the 

information perceived as music should be related to the degree of success of any musical piece. 

Obviously there are factors as personal experience and culture which have an important influence over 

the process of interpreting a sequence of sounds. We may or may not like some specific type of music; 

but this only supports our belief that pleasure, especially in the case of music, comes after certain 

degree of predictability of the sounds. This is not to oversimplify the phenomenon of pleasure and its 

causes; in fact sometimes pleasure comes after the surprise of hearing a different path of sounds and 

contrasting it with the path we expected before actually listening the piece. But in any case, we think 

the popularity of a music piece results from the way the composer organized the sound patterns. For a 

large number of symbols, -sounds is this case- more understandable patterns are those which the 

sounds are arranged to lower the entropy of the whole set of symbols. For the music most people like, 

there is a relatively low entropy and therefore low information structure that we can recall and also 

build a clearer map of expectations for the upcoming sounds. We have selected some of the most 

recognized music pieces from the Baroque and Classical periods. We compare the entropy of these 

pieces with the averages of the entropy for many music pieces in the same periods. Results are 

presented in Table 4, showing that the value of P(N) in this case is 1.04 



Table 4. Comparison of entropy for MIDI music of Baroque and Classical periods and 

some of the most recognized pieces in the same period. 

Composer Period Piece H
average 

H
average 

H
Vivaldi Baroque Four Stations.Spring 0.6025
Bach Baroque TOCC&FUG.Organ 0.5372
Handel Baroque Hallelujah 0.4897

Beethoven Classic Symph.9_4 0.4658
Mozart Classic Eine Kleine Nachtmusik K525 0.5865

6 composers Baroque 55 pieces 0.5714
5 composers Classic 45 pieces 0.5553

0.5431

0.5262

0.5346

0.56335

 
H changed according to the estimated number of instruments used for recordings. When comparing 

the minimum (a single instrument) with the maximum (orchestra) we find a tendency for the larger 

number of instruments to cause an entropy reduction, suggesting an increase of structure for the 

musical pieces interpreted by a larger number of instruments. We think this might be the result of the 

proper use of the additional degrees of freedom introduced by the addition of instruments. We shall 

highlight the fact that adding instruments increases the difficulty of keeping harmonies and 

synchronization in polyphonic music, approaching a point in which the risk of losing structure and 

beauty of the sound, is an important factor in establishing the limits of the size of the orchestra. 

Considering the two cases here analyzed we estimate a P(N) ranging from 1.02 to 1.20 (average 1.1) 

Table 5. Comparison of entropy for two pieces of MIDI music interpreted by different 

number of instruments. 

Composer Period Piece Instrument H

RIMSKY.KORSAKOV Romantic FlyOfBumblebee.Orchestra about 10 0.5530
FlyOfBumblebee.Piano1 piano solo 0.7154
FlyOfBumblebee.Piano2 piano solo 0.5972
FlyOfBumblebee.Piano3 piano solo 0.6724

RACHMANINOV 20th Century PianoConcerto.Nro2 about 10 0.5166
PianoConcerto.Nro2 piano solo 0.5291  



3.8. Summary of Results: 

Table 6. Impact of synergy estimated for several type of systems. 

W P(W) P(N)
Measure of work 

output
Ratio W Ratio 

Negentropy

1a
Social Complexity in 
Myrmicinae ants

Efficiency in energy 
consumption

1.70 2.00 0.85

1b
Social Complexity in 
Attini ants

Efficiency in energy 
consumption

2.00 2.20 0.91

2
Social complexity in 
aggregates

Exponent of energy 
efficiency function

2.50 2.60 0.96

3
Scientific 
development

Economic 
development

2.60 3.10 0.84

4 Division of labor
Economic 
efficiency

2.96 3.00 0.99

5a Brain Complexity Polymorphysm 2.70 4.00 0.68

5b Brain Complexity Log Colony size 3.00 4.00 0.75

6a Spanish text Readability 0.93 1.06 0.88

6b English text Readability 1.05 1.02 1.03

7a Entropy in music Popularity 2.00 1.04 1.92

7b Entropy in music
Number of 
insytruments

2.00 1.10 1.82

Example Entropy measure P(W)/P(N)

 

4. Conclusions 

In some of the cases examined here, a synergistic increase in work was highly correlated to a 

decrease in information entropy of the system. This increase in negentropy was correlated to the 

efficiency of work output of the system which also increased strongly, but slightly less than that of 

negentropy. This is consistent with our understanding of the second law of thermodynamics, 

suggesting an increasing loss of information in the process of transforming it to work.  

In some examples, the phenomena showing synergy was not present. That is, for languages such as 

English, Spanish and music, the impact of information content on the output was a reduction of 

entropy making the system's structure more orderly, creating the conditions that achieve higher 

aesthetic efficiencies. This process, however seems to be very different from that observed in known 

synergistic phenomena. 
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