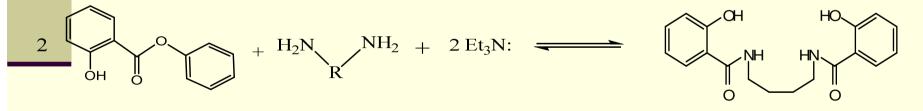

Crystal structure of H₄L (N-N'-Bis(ohydroxybenzoyl) 1,4 diaminobutane

G. González-Riopedre, M.I. Fernández-García, M. Maneiro, A. M Gonzalez-Noya, Y. Perez, B. Fernández, M.A. Vázquez-Fernández

Dpto. de Química Inorgánica. Facultad de Ciencias. Univ. de Santiago de Compostela. Lugo 27002 (Spain). misabel.fernandez.garcia@usc.es

ABSTRACT

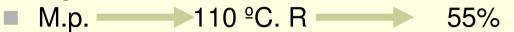
A bis-amide bis-phenoxy N₂O₂ ligand was obtained from the 2:1 molar reaction of phenyl salicylate and the diamine, 1,4-Diaminobutane, to yield H₄L. The ligand has been characterised by elemental analysis, IR, and ¹H and ¹³C NMR spectroscopies, mass spectrometry (ES) and X ray diffraction spectroscopy



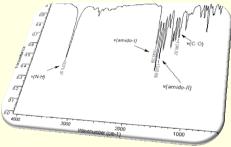
INTRODUCTION

- Our interest in this type of ligands derives from the known ability of ligands containing amide groups to stabilise high oxidation states of metal ions when coordinated with the deprotonated nitrogen atom.
- The oxygen amide atom of these ligands can act as a bridge between neighbouring metallic atoms and afford multi-dimensional and supramolecular structures.
- For this purpose, we selected the tetraanionic H₄L bisamidobisphenoxy ligand. We have thought that the utilization of tetraanionic bis-amide bis-phenoxy ligands should favour the aggregation of neighbouring complexes through these donors atoms (amide and phenoxo oxygen).
- In previous papers¹ we reported on the synthesis, structures and properties of Mn(III) complexes with asymmetrical trianionic amidoimino-phenoxo ligands.
- Herein, we present the tetraanionic ligand, H₄L that contain six potential donor atoms: two amide nitrogen, two phenoxo and two amide oxygen atoms

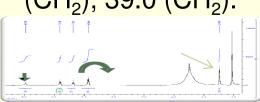
- H4L were prepared according to the literature², in this case by reaction in a 2:1 molar reaction of phenyl salicylate and the diamine at 180-190 ^oC for 1 h.
- The product was treated with diethyl ether to obtain a white powder at almost quantitative yield.
- White crystals of H₄L, suitable for single crystal X-ray diffraction studies, were obtained by slow evaporation of methanol solution of the ligand.

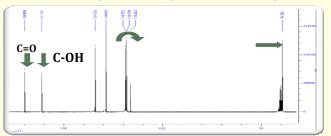


1,2-bis(2-hidroxybencen-2-carboxamide)-butilendiamine H_4L


The compound was also characterised by elemental analysis, IR, and ¹H and ¹³C NMR spectroscopy.

RESULTS


Ligand H4L:



- Anal Calc. for C18H20N2O4: C,65.8; H, 6.1; N, 8.5. Found: C,66.2; H, 5.6; N,8.6%. MS ES (m/z): 329;
- IR (KBr, cm⁻¹): v(N-H) 3407, v(O-H) 3057, v(amide I) 1643, v(amide II) 1586, v(C-O) 1259.

- ¹H NMR (DMSO-d₆, ppm): δ 9.17 (s: singlet, 2H), 7.20-7.80 (m: multiplet, 4H), 3.34-3.28 (m, 4H), 1.55 (m, 2H).
- ¹³C NMR (DMSO-d₆, ppm): δ 133.9 (C-OH), 161.6 (C=O), 27.5 (CH₂), 39.0 (CH₂).

RESULTS

Crystal data and structure refinement for H₄L are listed in table 1. Crystal structure, with the numbering scheme, is shown in figure 1. Selected bond lengths and angles, as well as potential hydrogen bonds and bonding scheme, are listed in table 2 and table 3.

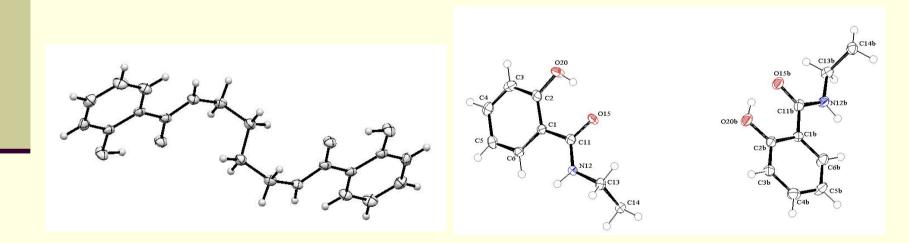
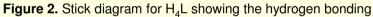
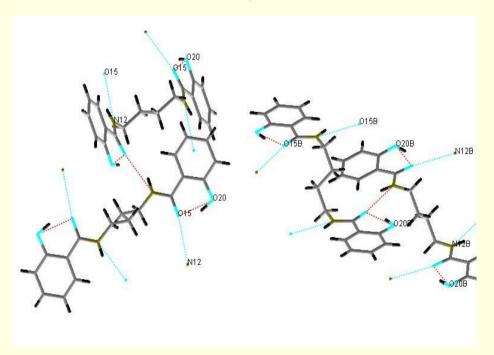


Figure 1

DISCUSSION


- In the crystal structure of the title ligand C18H20N2O4, exists two not-identical parts divided by the C14-C14B.
- The slight asymmetry given is showed by the slight different distances collected in Table 1.


 Table 1: Selected bond lengths (Å) and angles ($^{\circ}$) for H₄L

O(20)-C(2)	1.357(2)	O(20B)-C(2B)	1.354(2)
O(20) - H(20)	0.98(24)	O(20B) - H(20B)	0.96 (2)
O(15)-C(11))	1.2593(19)	O(15B-C(11B)	1.257(2)
C(1) - C(2)	1.414 (2)	C(1B) - C(2B)	1.406 (2)
C(1) - C(11)	1.482 (2)	C(1B) - C(11B)	1.491 (2)
C(11) - N(12)	1.330(2)	C(11B) - N(12B)	1.333(2)
N(12)- C(13)	1.465(2)	N(12B)- C(13B)	1.459 (2)
N(12)- H(12)	0.851(2)	N(12B)- H(12B)	0.873(14)
C(13) - C(14)	1.519(2)	C(13B) - C(14B)	1.517 (3)
С(2) – О(20)-Н(20)	102.5(14)	C(2B) – O(20B)- H(20B)	100.7(16)
O(15)-C(11))C(1)	120.13(15)	O(15B)-C(11B)-C(1B)	120.47(15)
N(12)-C(13)- H(13A)	109.2	N(12B)-C(13B)- H(13C)	109.1
N(12)-C(11)-C(1)	118.75(15)	N(12B)-C(11B)-C(1B)	118.60(16)
C(11)-N (12)-C(13)	124.18(16)	C(11B)-N (12B)- C(13B)	123.57(15)
N(12)-C(13)-C(14-)	112.18(15)	N(12)-C(13)-C(14-)	112.70(15)

DISCUSSION

- The C(11)-O(15) and C(11B)-O(15B) distances of 1.259 and 1.257 Å respectively are consistent with C=O double bonding of amide groups. The oxygen O(20) and O(20B) atoms are forming phenolic groups, and they present distances O(20)-C(2) and O(20B)-C(2B) of 1.357 and 1.354 Å respectively, corresponding to the expected single bonds. O(20)-H(20) distances 0.98 (4) Å are longer than the O(20B)-H(20B) 0.96 Å.
- This molecule has intramolecular hydrogen bonds between the phenolic oxygens (O(20) and O(20B)) and amide oxygens (O(15), O(15B). Another hydrogen bond is the interaction between the amide nitrogen and amide oxygen N(12)--H(12)...O(15), and N(12B)--H(12B)...O(15B)* of a neighboring molecule. Moreover π-stacking interactions are further appreciated between the benzene rings (Table 3, Figure 2). N(12) --H(12) ...O(15)**

REFERENCES

- 1.-a) Gustavo González- Riopedre, Manuel R. Bermejo, M. Isabel. Fernández-García, Ana.M. González-Noya, Rosa Pedrido, M Jesús Rodriguez-Doutón, M. Maneiro, *Inorg. Chem*, 2015, **54(6)**, 2512; b) Manuel R. Bermejo, Ana M. González Noya, Victor Abad, M. Isabel Fernández, Marcelino Maneiro, Rosa Pedrido and Miguel Vázquez. *Eur. J. Inorg. Chem*, 2004, **18**, 3696.
 - **2**.- H. Ojima and K. Aichi, *Nippon Kagaku Kaishi* 1967, **88 (3)** 329-333.