
Mol2Net, 2015, 1(Section B), pages 1-9, Proceedings                         1               

http://sciforum.net/conference/mol2net-1 

 

 

  
Mol2Net  

 

 

Chemoinformatics Profiling of Ionic Liquids 

Cytotoxicity—From Machine Learning to Network-Like 

Similarity Graphs † 
Maykel Cruz-Monteagudo 1,2,*, Eduardo Tejera 2, Cesar Paz-y-Miño 2, Yunierkis Perez-Castillo 3,4, 

Aminael Sánchez-Rodríguez 5, Fernanda Borges 1 and M. Natália D. S. Cordeiro 6 
1 CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 

Porto 4169-007, Portugal; E-Mail: fborges@fc.up.pt (F.B.) 
2 Instituto de Investigaciones Biomédicas (IIB), Universidad de Las Américas, 170513 Quito, 

Ecuador; E-Mails: eduardo.tejera@udla.edu.ec (E.T.); cesar.pazymino@udla.edu.ec (C.P.-Y.-M.) 
3 Sección Físico Química y Matemáticas, Departamento de Química, Universidad Técnica Particular 

de Loja, San Cayetano Alto S/N, EC1101608 Loja, Ecuador; E-Mail: yunierkis@gmail.com 
4 Molecular Simulation and Drug Design Group, Centro de Bioactivos Químicos (CBQ), Central 

University of Las Villas, Santa Clara, 54830, Cuba 
5 Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Calle París S/N, 

EC1101608 Loja, Ecuador; E-Mail: asanchez2@utpl.edu.ec 
6 REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 

4169-007 Porto, Portugal; E-Mail: ncordeir@fc.up.pt 

* Author to whom correspondence should be addressed; E-Mail: gmailkelcm@yahoo.es;  

Tel.: +351-220-402-000; Fax: +351-220-402-009. 

 

Received: 20 September 2015 / Accepted: 20 September 2015 / Published: 2 December 2015 

 

Abstract: Ionic liquids (ILs) possess a unique physicochemical profile providing a wide range of 

applications. However, their “greenness”, specifically their claimed relative non toxicity has been 

frequently questioned, hindering their REACH registration processes and so, their final 

application. In this work we introduce a reliable, predictive, simple and chemically interpretable 

classification and regression tree (CART) classifier enabling the prioritization of ILs with a 

favourable cytotoxicity profile. By inspecting the structure of the CART several moieties that can 

be regarded as “cytotoxicophores” were identified and used to establish a set of SAR trends 

specifically aimed to prioritise low cytotoxicity ILs. We also demonstrated the suitability of the 

joint use of the CART classifier and a group fusion similarity search as a virtual screening strategy 

for the automatic prioritisation of safe ILs disperse in a data set of ILs of moderate to very high 

cytotoxicity. Additionally, we decided to complement the quantitative results already obtained by 

applying the network-like similarity graphs (NSG) approach to the mining of relevant structure-
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cytotoxicity relationships (SCR) trends. Finally, the SCR information concurrently gathered by 

both, quantitative (CART classifier) and qualitative (NSG) approaches was used to design a 

focused combinatorial library enriched with potentially safe ILs. 
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1. Introduction 

Ionic liquids (ILs) constitute one of the hottest 

areas in chemistry since they have become 

increasingly popular as reaction and extraction 

media [1]. Their almost limitless structural 

possibilities, as opposed to limited structural 

variations within molecular solvents, make ILs 

‘‘designer solvents’’ [2]. They have also been 

widely promoted as “green solvents” [3] but such 

a “greenness” has been frequently questioned [1].  

Despite the scarcity of reports of the prediction 

of the cytotoxicity of ILs by using a classification 

approach [4], we consider that a computational 

prediction system based on the use of 

classification methods is well justified and can 

offer a practical tool for the identification of new 

and safe ILs. So, in this work we intend to 

introduce a computational system allowing a fully 

automatic and chemically interpretable IPC-81 

cytotoxicity profiling of ILs. In addition to test the 

predictive capabilities of the system, its potential 

as the core of a virtual screening (VS) strategy 

directed to prioritise safe ILs will be 

demonstrated. Additionally, we complemented 

these results by applying the NSG approach to the 

mining of SAR trends relevant for the cytotoxicity 

of ILs, namely, structure-cytotoxicity 

relationships (SCR) trends which can be used as 

useful tips guiding the molecular design of new 

and safe ILs. Finally, the SCR information 

concurrently gathered by both, quantitative 

(CART classifier) and qualitative (NSG) 

approaches was used to design a focused 

combinatorial library enriched with potentially 

safe ILs. 

2. Results and Discussion 

Cytotoxicity CART Classifier. The main goal of 

this work is to derive a reliable tool for the 

automatic prioritisation of safe (low cytotoxicity) 

ILs. The decision tree corresponding to the 

simplest best performing CART classifier found 

is shown in Figure 1.  

In general terms, the classifier exhibits a good 

classification performance. The levels of accuracy 

(ILs correctly classified), sensitivity (Class_1 ILs 

correctly classified) and specificity (Class_0 ILs 

correctly classified) achieved by the CART were 

around 86%, evidencing the discrimination power 

and statistical significance of the pattern found. 

See details in Table 1. 
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Cytotoxicophores Identification. The influence of 

the SMFs must be interpreted as a function of the 

level occupied by the respective SMFs in the 

decision tree (the influence of the SMF decreases 

from the base to the leaf of the tree). So, 

considering the structure of the decision tree 

depicted in Figure 1 and the structural information 

of the SMFs it is possible to identify several 

moieties on ILs inducing a moderate-to-very high 

cytotoxicity that can be regarded as 

“cytotoxicophores”. According to this analysis, in 

order of influence, the cytotoxicophores identified 

are: 

 Cationic linear alkyl side chain of length > 

5. 

 Anions with highly fluorinated alkyl side 

chains (a fluorocarbonated side chain of length 

≥ 2 or two or more trifluoromethyl groups). 

 Cationic aromatic N-heterocycles with 

linear alkyl side chain of length ≥ 4. 

 Six membered aromatic rings with a methyl 

substituent, which can be either the cation head 

group or its substituent. 

Only one moiety was found to have a positive 

influence on the cytotoxicity profile of ILs, 

reducing their cytotoxicity from moderate-to-

very high to low: 

 Short alkyl side chains functionalized with 

polar nitrile groups on (essentially although not 

restricted to) aliphatic cation head groups 

containing nitrogen atoms. 

It is important to highlight that the five SMFs 

identified can also be directly used as 

cytotoxicophores suitable for automatic 

procedures of ILs prioritisation such as expert 

systems, in addition to the cytotoxicity CART 

classifier proposed in this work. 

 

Figure 1. Chemically interpretable decision 

tree corresponding to the best preforming 

CART classifier found. 

Table 1. Classification matrix and 

classification performance metrics of the 

CART classifier for the training, test and 

external evaluation sets. 

 
TRAINING 

SET 

TEST 

SET 

EXTERNAL 

EVALUATION 

SET 

P
re

d
ic

te
d
 

 
Observed 

0 1 0 1 0 1 

0 125 8 20 2 25 3 

1 21 51 4 8 5 9 

Acc. (%) 85.85 82.35 80.95 

Se. (%) 86.44 80.00 75.00 

Sp. (%) 85.62 83.33 83.33 

FN (%) 13.56 20.00 25.00 

FP (%) 14.38 16.67 16.67 

MCC (%) 68.34 60.39 55.90 

FClass 1 (%) 77.86 72.73 69.23 

FClass 0 (%) 89.6 86.96 86.21 

Acc.: Accuracy; Se.: Sensitivity or true positives (TP) rate; 

Sp.: Specificity or true negatives (TN) rate; FN: False 

negatives (FN) rate; FP: False positives (FP) rate; MCC: 

Matthews correlation coefficient; FClass 1: F-measure for Class 

1; FClass 0: F-measure for Class 0. 
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Joint Use of CART Classifiers and Group Fusion 

Similarity Searches for the Automatic 

Prioritization of Safe ILs. The use of the 

cytotoxicity CART as a virtual screening tool 

could provide a practical solution to the automatic 

prioritisation of safe (poorly cytotoxic) ILs. 

First, a group fusion similarity search (GFSS) 

approach [5] was applied. The set of reference 

structures consist of 20 structurally diverse ILs of 

lowest cytotoxicity, specially focused on the 

anion species. The degree of structural proximity 

by the corresponding values of 1 – the normalized 

Euclidean distance (1ED). Finally, the set of 

1ED values between each reference IL and each 

database IL is combined into a fused similarity 

score () by averaging the 20 corresponding 1ED 

values. In this way,  "captures" the structural 

patterns determining ILs of low cytotoxicity and 

thus can be used independently as a ranking 

criterion in a GFSS task. However,  was derived 

to modify PPClass_1 and attain the variability 

required for library ranking. So, the result of using 

 as a weighing factor of PPClass_1 is a new scoring 

metric that quantifies the likelihood of an IL to 

exhibit a favourable cytotoxicity profile based on 

probabilistic (PPClass_1) and structural similarity 

() criteria.  This new scoring metric will be 

denoted from now on as  and it is defined as the 

geometric mean of PPClass_1 and  ( Π =

 √𝑃𝑃Class_1  ×  𝜀). 

So, decided to simulate an experiment to 

evaluate the ability of the approach to retrieve just 

those 12 ILs of low cytotoxicity (Class 1) of the 

external evaluation set dispersed in the full set of 

200 ILs of moderate-to-very high cytotoxicity 

(Class 0). For comparison purposes we decided to 

estimate also the enrichment ability of the 

independent use of the GFSS approach by using 

as ranking criterion the fused similarity score . 

The respective values of AUAC and ROC 

metrics obtained from the application of the 

CART-GFSS approach suggest that it is able to 

rank a safe IL earlier than an IL of moderate-to-

very high cytotoxicity with a probability > 0.85. 

Instead, the values of these metrics obtained for 

the GFSS approach show a still good overall 

enrichment performance (ROC = 0. 78), but 

inferior to the CART-GFSS approach by about 

8%. 

The analysis of RIE at the respective top 1%, 

5%, 10% and 20% fractions also points to an 

attractive early recognition ability of both 

approaches, consistently favouring the CART-

GFSS approach. This pattern is also observed 

when the metric analysed is BEDROC. See details 

in Table 2. 

Network-like Similarity Graph SAR Mining. The 

analysis was directed to detect in the ILs NSG 

highly discontinuous regions (clusters of ILs) 

Table 2. Classic and early recognition 

enrichment metrics computed to evaluate the 

enrichment performance of the CART-GFSS 

and GFSS approaches, respectively.a 
Metric CART-GFSS GFSS 

Classic Enrichment Metrics 

AUAC 0.8557(±0.0014) 0.7775(±0.0013) 

ROC 0.8771(±0.0015) 0.7942(±0.0014) 

EF1% 11.7778(±0.3200) 11.7778(±0.3200) 

EF5% 6.4242(±0.0766) 4.8182(±0.0574) 

EF10% 5.6212(±0.0449) 3.2121(±0.0257) 

EF20% 3.6977(±0.0197) 3.2868(±0.0175) 

Early Recognition Metrics 

RIE1% 6.9142(±0.1692) 6.9116(±0.1691) 

RIE5% 6.5692(±0.0717) 5.8978(±0.0643) 

RIE10% 5.3265(±0.0397) 4.3204(±0.0322) 

RIE20% 3.9049(±0.0190) 3.1222(±0.0152) 

BEDROC1% 0.3914(±0.0234) 0.3913(±0.0234) 

BEDROC5% 0.4435(±0.0053) 0.3982(±0.0047) 

BEDROC10% 0.5042(±0.0028) 0.4089(±0.0023) 

BEDROC20% 0.6065(±0.0014) 0.4849(±0.0012) 

a: The relative error associated to each enrichment metric is 

reported. AUAC: area under the accumulation curve; ROC: 

area under the ROC curve; EF1%/5%/10%/20%: enrichment factor 

at χ = 1%/5%/10%/20%, respectively; RIE1%/5%/10%/20%: robust 

initial enhancement at χ = 1%/5%/10%/20%, respectively; 

BEDROC1%/5%/10%/20%: Boltzmann-enhanced discrimination of 

ROC at χ = 1%/5%/10%/20%, respectively. 
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encoding minimal structural variations leading to 

significant cytotoxicity changes, with a special 

interest on those containing cytotoxicity cliffs. 

Figure 2 shows the NSG obtained at 95% 

similarity threshold. 

This network is characterised by the 

coexistence of regions with continuous and 

discontinuous SARs. Regions of continuous SAR 

are characterized by clusters of small green nodes 

whereas discontinuous regions involve clusters 

composed of large green and red nodes 

(highlighted with a circle around). Clusters of ILs 

combining large red and green nodes connected 

by an edge are cytotoxicity cliff markers that can 

be easily identified. These types of cluster were 

visually inspected in order to identify the key 

structure-cytotoxicity relationship (SCR) trends 

dominating this ILs network. 

The most significant cytotoxicity cliff pair in 

this network (see Figure 2) it is constituted by N-

Methyl-N,N-dioctyl-1-octanaminium 

bis(trifluoromethylsulfonyl)imide and N-Ethyl-

N,N-dimethyl-1-butanaminium 

bis(trifluoromethylsulfonyl)imide (nodes 1 and 2 

in the network) which is a clear example of the 

influence of the alkyl side chain length over the 

cytotoxicity of ILs [6-10].  

The cluster including the ILs represented by 

nodes 3, 4 and 5 clearly suggest the effect of 

highly fluorinated anions over cytotoxicity. A 

quite explicit correlation between the degree of 

fluorination of the anion and cytotoxicity it is 

observed, as reported in previous studies [11].  

The last cluster analysed (nodes 6, 7, 8 and 9) 

suggest a weak influence of the cation head group 

over cytotoxicity. However, another previous 

finding can be confirmed in this cluster: the 

relatively higher cytotoxicity of aromatic cation 

head groups [12, 13].  

 

 

Design and Assembling of a Focused 

Combinatorial Library Enriched with Potentially 

Safe ILs. Finally, the SCR trends identified were 

used to assemble a focused combinatorial library 

enriched with potentially safe ILs. The final result 

is a focused combinatorial library of 697748 ILs. 

We estimate the quality of the library assembled 

based on the use of a combined scoring metric () 

that quantifies the likelihood of a IL to exhibit a 

favourable cytotoxicity profile. The values of  

near to 1 will be obtained for ILs with a high 

probability of exhibiting a favourable cytotoxicity 

profile. The analysis of the combinatorial library 

revealed that 75.57% of the ILs in the library 

exhibited values of  ≥ 0.8, while just 17.72% 

 

 

Figure 2. NSG constructed with the software 

SARANEA for a set of 281 ionic liquids using 

a Tanimoto similarity threshold of 0.95. The 

molecular structure and the respective EC50 

values for IPC-81 leukaemia rat cell lines of the 

nine ionic liquids conforming the three clusters 

analysed are highlighted in three respective 

square boxes. These three clusters are 

highlighted in the NSG by red circles while the 

rest of clusters including ILs inducing a high 

discontinuity (connected large red and green 

nodes) are highlighted with black circles and 

further subjected to SAR pathway analysis. 
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exhibited values of  < 0.5. The mean value of  

obtained for the library was of 0.67. Considering 

these values one can expect that an IL randomly 

selected from the library assembled will have a 

probability of exhibiting a favourable cytotoxicity 

profile around 67%. 

3. Materials and Methods 

Data Collection. The UFT/Merck IL DB reports 

the half cytotoxic concentration (EC50) values 

(expressed in micromolar units) towards the rat 

leukemia cell line IPC-81 for 309 ILs and related 

salts. 

Structure Codification. The structural codification 

was conducted by using the approach proposed by 

Prof. Varnek ś group and depicted in [14]. 

Design of the Experiment. The dataset of 281 ILs 

was subdivided by applying an EC50 threshold of 

5000 µM into 81 safe or low toxicity ILs 

(Class_1) and 200 ILs with moderate-to-very high 

toxicity (Class_0). Once the classes were 

assigned, we proceeded to split the dataset into 

three subsets: training, test and external 

evaluation sets, as part of the model validation 

scheme [15]. 

Feature selection, Modelling and Validation. The 

full vector of ISIDA SMFs was reduced by means 

of the mRMR software [16] to a minimally 

redundant vector of size 50 composed of 9/41 

anion/cation SMFs. Once this subset was found, 

the definitive subset of features, and consequently 

the final classification model, was directly 

determined by using the Classification and 

Regression Trees (CART) approach  implemented 

on the Data Mining module of STATISTICA 8.0. 

Both the learning and predictive ability of the 

classification tree model were assessed by 

checking overall and class-specific performance 

measures on training, test and external evaluation 

sets, respectively [17]. 

Enrichment Analysis. The main goal in a virtual 

screening effort is to select a subset from a large 

pool of compounds (typically a compound 

database or a virtual library) and try to maximise 

the number of known actives in this subset. That 

is, to select the most “enriched” subset as possible. 

Several enrichment metrics have been proposed in 

the literature to measure the enrichment ability of 

a VS protocol [18]. In this work, we use some of 

the most extended metrics. 

Network-like Similarity Graphs Analysis. For this 

task we resort to SARANEA [9], a freely available 

program that implements a graphical user 

interface to NSGs and NSG-based data mining 

techniques. In SARANEA, as a criterion for edges 

between nodes in NSGs, connected ILs needed to 

exceed a predefined Tanimoto similarity 

threshold value. To search for highly 

discontinuous regions in the network containing 

“cytotoxicity cliffs” pairs encoding critical 

structure variations for cytotoxicity we used a 

Tanimoto similarity threshold of 0.95. 

Combinatorial Library Generation. The 

assembling of the focused combinatorial library 

was based on three sets of 15 cationic head 

groups, 20 cationic side chains and 31 anions 

previously identified as favouring the cytotoxicity 

behaviour of ILs. A combinatorial library of 

22508 unique cations was generated with the aid 

of the SmiLib software [19] by using as inputs the 

corresponding SMILES notation of the two sets of 

head groups and side chains. The SmiLib software 

generated an SDF file comprising 22508 unique 

cations. The SDF file comprising the 31 anions 

was generated by using the ChemAxon ś JChem 

for Excel software [20]. Both, cation’s and 

anion’s SDF files were submitted to the ISIDA 

Fragmentor software [21] to compute the 

corresponding 371/2136 SMFs used to establish 

the structural reference space for the similarity 

assessment of the initial set of 281 ILs. Finally, 

the corresponding SVM output files provided by 

the ISIDA Fragmentor were converted to a fixed 

format/length vector file and concatenated into a 

unique vector file of size 2507 (including the 
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corresponding vector files of 371/2136 

anion/cation SMFs) for each one of the 697748 

ILs of the combinatorial library. The similarity 

assessment and the corresponding basic statistical 

analysis of the combinatorial library were 

conducted by using a MatLab implementation 

developed in our group. 

Conclusions 

In this work we have derived a reliable, 

predictive, simple and chemically interpretable 

CART classifier enabling the prioritisation of ILs 

with a favourable cytotoxicity profile. The 

analysis of the structure of the corresponding 

decision tree allowed us to identify several 

moieties that can be regarded as 

“cytotoxicophores. We also demonstrated the 

suitability of the joint use of the CART classifier 

and a group fusion similarity search (the CART-

GFSS approach) as a virtual screening strategy for 

the automatic prioritisation of safe On the other 

hand, the NSG approach and NSG-based data 

mining techniques implemented on SARANEA 

have proved to be an efficient tool to mine 

relevant SCR information guiding the design of 

potentially safe ILs. The adaptation of the NSG 

approach proposed here to the particular and 

special case of disconnected molecular structures 

such as ILs also contributes to the integration of 

approaches like the traditional T-SAR analysis 

and the computational mining and visualisation of 

relevant SCRs of this interesting family of 

chemicals. Finally, the SCR information gathered 

from both quantitative (CART classifier) and 

qualitative (NSG) approaches guided the design 

of a focused combinatorial library of about 

700000 ILs with a likelihood to exhibit a 

favourable cytotoxicity profile of about 80%. 

Such a virtual library represents a valuable 

decision making element for the development of 

ILs for various technical applications that fulfil 

the principles of green chemistry. 
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