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Abstract: Virtual Screening methodologies have emerged as efficient alternatives for the 

discovery of new drug candidates. At the same time, ensemble methods are nowadays frequently 

used to overcome the limitations of employing a single model in ligand-based drug design. 

However, many applications of ensemble methods to this area do not consider important aspects 

related to both virtual screening and the modeling process. During the application of ensemble 

methods to virtual screening the proper validation of the models in virtual screening conditions is 

often neglected. Frequently no analysis is performed of the diversity of the ensemble members or 

no considerations regarding the applicability domain of the base model are made. In this research 

we propose a method employing genetic algorithms optimization for the generation of virtual 
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screening tailored ensembles that address problems in the current applications of ensemble 

methods to virtual screening. The proposed methodology is successfully applied to the 

generation of ensemble models for the ligand-based virtual screening of dual target A2A 

adenosine receptor antagonists and MAO-B inhibitors as potential Parkinson’s disease 

therapeutics. 

. 

Keywords: Dual-target drugs, Virtual screening, MAO-B inhibitors, A2A adenosine receptors 

antagonist, Ensemble modeling, QSAR 

 

 

1. Introduction 

During the last decades, Virtual Screening 

(VS) methodologies have emerged as efficient 

alternatives to the expensive, in terms of time 

and money, High Throughput Screening (HTS) 

approaches for the discovery of new drug 

candidates [1]. In terms of efficiency, the hit 

rates obtained when VS tools are employed to 

filter large databases of chemical compounds are 

considerably higher than those obtained with 

HTS techniques [2]. Literature reports where VS 

experiments conducted to the identification of hit 

molecules in a wide range of application can be 

found elsewhere [3,4]. 

VS techniques can be divided into two main 

categories: Structure-Based VS (SBVS) and 

Ligand-Based VS (LBVS) [5]. The first one 

includes all the modeling approaches such as 

Molecular Docking and Molecular Dynamics 

that depend on the structure of a molecular 

receptor. In some cases the structure of the 

molecular target is not available or the research 

process focuses in a mechanism where a 

molecular target cannot be defined. It can also be 

the case that the amount of data to process is too 

large to complete a SBVS campaign in a 

reasonable amount of time. In these cases LBVS 

tools can aid in the drug discovery process. 

These types of techniques include Similarity 

methods, Shape-based methods, Pharmacophore 

modeling and Quantitative Structure-Activity 

Relationships (QSAR) studies [5,6]. Specifically, 

QSAR approaches have been used for VS in the 

early stages of drug discovery [7]. 

To exploit the full potential of QSAR 

modeling some general guidelines have to be 

followed. These guidelines have been 

summarized as best practices for QSAR [8]. In 

addition to these guidelines, in our previous 

research we pointed out the importance of the 

proper validation of QSAR models in VS 

conditions [9]. 

Ensemble methods (EM) have gained 

popularity among QSAR practitioners, providing 

a set of tools for combining the predictions of 

single models in a more robust and generalizable 

model [9-11]. Although the success of these 

methods in Ligand-Based Drug Design (LBDD) 

and LBVS, the currently published applications 

of ensemble methods to LBVS suffer from a 

limitation common to most LBDD workflows: 

their VS performance is not retrospectively 

evaluated prior to their use in VS campaigns. In 

addition, in most reports of applications of 

ensemble methods to LBVS no considerations 

are made regarding the diversity of the base 

classifiers. The optimal size of the developed 

ensembles is neither considered and all available 

base classifiers are combined instead. These two 

last factors can drastically reduce the 

performance of ensemble methods [12]. 
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On the other side, Parkinson Disease (PD) 

causes chronic disability and it is the second 

commonest degenerative condition of the 

nervous system. The standard treatment for PD is 

levodopa, which helps to increase the dopamine 

levels in the brain [13]. However there is a need 

of finding alternative therapies since levodopa 

has many side effects and can become ineffective 

over time. To this end, multicomponent therapies 

(combination of different drugs) have been used. 

However the discovery of new multi-target drugs 

(a single molecule that acts on multiple targets) 

is attracting more and more attention [14]. Multi-

target drugs, compared with the use of 

combinations of different drugs, have more 

predictable pharmacokinetic and 

pharmacodynamic relationships as a 

consequence of the administration of a single 

drug [15]. 

Here, are summarized the results obtained in 

the development of a GA-based ensemble 

selection method and its application to the search 

of ensembles suitable for the VS identification of 

dual target ligands for PD. It should be 

mentioned that the application of LBVS tools for 

the planned design of ligands with a predefined 

dual-target profile is a recent development and 

represents an important challenge to medicinal 

chemists [16]. 

 

.

2. Results and Discussion 

The collection, curation, class assignment, 

representation and dataset splitting processes 

were performed following the procedures 

described in the Materials and Methods section. 

Both modeling sets were split into training and 

test subsets using three sphere exclusion 

algorithms 1M, 2M and 3M. This partition 

scheme lead to the selection of 20-23 % of the 

modeling data for the test set and guaranties the 

representativeness of each class in the test set. 

Fragment descriptors were calculated with 

ISIDA Fragmentor software [17,18] and they 

were filtered to discard those with zero or close 

to zero variance. Afterward, the  mRMR 

algorithm [19] was employed to only keep the 

250 more relevant descriptors. ISIDA’s header 

files listing the 250 most relevant fragments for 

each dataset and their partitions are provided as 

Supporting Information. 

The main goal of this paper is to find models 

that can be effective in the identification of dual 

target ligands for PD through VS. To this end, 

two sets of QSAR models were independently 

developed for A2AAR binding and MAO-B 

inhibition following the procedure summarized 

in the Materials and Methods section. For each 

endpoint, three feature selection methods and 

three different classification algorithms were 

combined to generate nine different classifier 

types, which were trained and validated using 

three modeling set partitions obtained with the 

sphere exclusion algorithms 1M, 2M and 3M. In 

consequence, 27 different classification 

experiments per endpoint were conducted. At 

this point, it is important to remark that the 

external set was only used to evaluate the real 

predictive power of the models. In Table 1 are 

presented the statistics of the optimal models for 

each partition of the dataset. These results show 

that the employed QSAR modeling framework 

provides accurate, robust and generalizable 

models. 

All 16 known dual ligands, MAO-B inhibitors 

and A2AAR antagonists, were compiled from the 

literature [20,21]. For each known dual-target 

compound 1608 decoys were selected based on 

desirability-based home-developed algorithm 

that has been previously employed in the 
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selection of tailored decoy sets for the validation 

of virtual screening strategies [9]. These ligands 

and decoys were prepared for virtual screening 

following the same protocol described for the 

datasets. 

To evaluate the performance of the models in 

virtual screening the following metrics were 

employed: Area Under the Accumulation Curve 

(AUAC), Area under the Receiver Operating 

Characteristic Curve (ROC), Enrichment Factor 

(EF) and Boltzmann-Enhanced Discrimination of 

ROC (BEDROC). These metrics were computed 

as proposed by Truchon et. al.[22] 

In our previous research [9] the VS-tailored 

ensembles were obtained using only a very 

limited set of predictive models that were 

selected as the best ones derived from each 

modeling approach. However, during the 

modeling process a larger number of high quality 

models are obtained that we did not considered 

for ensemble modeling in that investigation.  

To discard low performing models, the whole 

pool of classification models was first filtered 

and a model was considered to be accurate, 

robust and predictive if it had values of accuracy 

higher than 0.75 in predicting the train, selection 

and external sets as well as in the cross validation 

experiments. The models fulfilling the above 

criteria are considered as valid models from here 

on.  

For the three modeling set partitions obtained 

after applying the sphere exclusion algorithms, 

there were a total of 1526 and 1347 valid models 

for the A2A adenosine receptor antagonists and 

MAO-B inhibitors datasets respectively. Since 

one of the factors negatively influencing the 

performance of ensemble models is the 

redundancy of the base classifiers, these valid 

models were clustered following the protocol 

above to obtain a representative set of them. This 

procedure yielded 33 and 48 representative 

models for the A2A adenosine receptor 

antagonists and MAO-B inhibitors datasets 

respectively. The representative model of each 

cluster was selected as the one having the highest 

value of BEDROC for α=160.9. The best 

performance among the representative models 

corresponded to a value of BEDROC=0.20 for 

α=160.9. 

We then evaluated the proposed GA-guided 

algorithm for the search of the ensemble 

maximizing BEDROC at a given fraction of 

screened data. The algorithm was run five times 

with different initial populations of 100 

individuals each one, yielding 500 solutions. 

That is, 500 ensembles are obtained. The GA 

fitness function maximizes BEDROC for 

α=160.9. 

In Table 2 are presented the enrichment 

metrics for the best individual found after 

running the GA-guided ensemble generation 

algorithm presented in this communication, when 

we search for the ensemble maximizing the 

initial enrichment of dual ligands. The 

accumulative curves for this ensemble as well as 

for its members are shown in Figure 1. 

The analysis of these results show that the 

obtained ensemble is composed by 14 models, 

five of them related to the prediction of the 

antagonist activity of the A2A adenosine 

receptor and nine related to the inhibition of the 

MAO-B enzyme. This ensemble outperforms the 

VS metrics of all its members. Specifically, the 

improvement in the value of BEDROC for 

α=160.9 for the obtained ensemble relative to the 

best single model it is composed of is 0.05. The 

model with the highest value of BEDROC 

(α=160.9) among all single models within the 

ensemble is also the one with the best value of 

this metric among the set of representative valid 

models. This improvement might seem 

meaningless, however it can be interpreted as 5% 
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more probability of retrieving a dual target ligand 

in the first 1% of the ranked list using the 

obtained ensemble compared to the best 

performing individual model [22]. From Table 2 

it can also be seen that the values of BEDROC 

for α=32.2 and α=20 are also higher when the 

ensemble model is compared with its members. 

In addition, improvements for the EF metric at 

the three analyzed fractions of screened data 

were obtained. The advantages of using the 

obtained ensemble for VS experiments over the 

use of single models can be visualized in Figure 

1 where the accumulative curves of the ensemble 

and the models it is composed of are plotted. 

From this figure it is clear that the ensemble 

model is able to retrieve more known dual 

ligands and at lower positions in the ranked list 

than any of the single models it is composed of. 

Another advantage of employing the proposed 

ensemble for VS tasks is that its applicability 

domain covers 93% of the whole virtual 

screening validation set, representing an 

improvement of 17% of coverage relative to the 

single model with the highest applicability 

domain coverage. If the applicability domain 

coverage of the ensemble is compared to that of 

the model with the highest BEDROC value for 

α=160.9, then this improvement increases to 

33%. In contrast, the value of ROC of the 

ensemble is lower than the mean value of ROC 

across the ensemble members. This last result is 

a consequence of designing the GA search to 

find ensembles maximizing the initial enrichment 

of known dual ligands. In other words, the 

calculations here performed focus in retrieving 

the more dual ligands at the very first part of the 

ranked list and neglect the position of the ligands 

in the remaining of the list. 

. 

 

Table 1. Statistics for the best performing models for each dataset partition. 

Target Methoda Sizeb Train.c Testd LOOe Bootf 5-Foldg Ext.h 

A2A 1M GA-AB 10 90 (93/86) 80 (90/72) 87.13 85.42 88.12 81 (81/81) 

A2A 2M GA-LSSVM 11 94 (90/97) 82 (77/88) 88.56 86.32 89.55 84 (84/84) 

A2A 3M GA-LSSVM 10 91 (87/93) 80 (78/83) 88.56 84.67 88.56 86 (84/88) 

MAO 1M GA-LDA 10 85 (90/81) 85 (83/86) 84.26 81.23 83.25 75 (79/67) 

MAO 2M BT-LSSVM 18 95 (93/97) 93 (92/94) 77.50 73.81 77.50 72 (63/88) 

MAO 3M GA-LSSVM 14 93 (94/92) 84 (79/89) 86.07 82.46 86.57 76 (78/73) 
a Modeling method the classifier is based on, GA stands for Genetic Algorithm, BT for Bagged Trees, AB for Adaboost, 

LSSVM for Least Squares Support Vector Machines and LDA for Linear Discriminant Analysis.  

b Number of features in the model.  

c,d,h Accuracy in predicting the training, test and external sets respectively 

e,f,g Accuracy of the Leave One Out, Bootstraping and 5-fold cross-validation experiments respectively 

 

Table 2. Enrichment metrics for the ensemble maximizing the initial enrichment of known dual 

ligands. 

Model 
BEDROC Alpha EF % 

ROC 
Cov. 

Domain 160.9 32.2 20 1 5 8 

Ensemble 0.25 0.32 0.33 28.47 7.14 4.46 0.45 0.93 

Mean Indiv. Models 0.04 0.08 0.10 4.39 2.27 1.42 0.44 0.69 
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Figure 1. Accumulation curves for the best ensemble as well as for its base classifiers: a) 

For the whole virtual screening validation datasset and b) For the first 10% of screened 

data. The black line corresponds to the obtained ensemble, red continuous lines to A2A 

models and blue discontinuous lines to the MAO-B models 

 

 

3. Materials and Methods 

Data sets 

Two data sets were used in this paper; A2AAR 

antagonists and human MAO-B (hMAO-B) 

inhibitors. The A2AAR antagonist data set was 

retrieved from 18 different literature sources. The 

compounds were divided into two classes 

according to their Ki values. The first class, 

designated as potent antagonists, included all 

chemicals with a Ki ≤ 1000 nM (pKi ≥ 6). The 

second class, named as weak antagonists, was 

formed by compounds with Ki >1000 nM (pKi < 

6). As result of this categorization a balanced 

dataset was obtained that included 161 potent 

antagonists and 166 weak antagonists. 

The hMAO-B inhibitors data set was 

compiled from [23] and it contains 474 

compounds. the compounds were classified in 

two groups according with theirs IC50 values. 

The first group, named hMAO-B inhibitors, 

included those chemicals with IC50 ≤ 20 µM 

(pIC50 ≥ 4.70), while the second one, designated 

as hMAO-B non-inhibitors comprises those 

compounds with IC50 > 20 µM (pIC50 < 4.70). 

Thus, the 474 ligands were split in 313 inhibitors 

and 161 non-inhibitors of  hMAO-B. 

The chemical structures were represented in 

smiles format and then converted to a SD file 

(SDF)  using the ChemAxon’s JChem for Excel 

(6.3.1.1807) program [24]. Each data set, as well 

as the decoy compound candidates were curated 

following the guidelines proposed in the 

literature [25] using ChemAxon’s Standardizer 

[26] 

Datasets splitting 

The external sets were randomly selected as 

20% of the entire initial datasets. The modeling 

sets were subsequently partitioned into training 

and test sets using the three sphere exclusion 

(SE) algorithms proposed by Golbraikh [27] and 

implemented in our laboratory that ensure the 

closeness in chemical spaces of the train and test 

sets. 

The three variants 1M, 2M, and 3M of the 

sphere exclusion algorithm proposed by the 
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developers and used here to divide the balanced 

modeling sets were implemented in MATLAB 

[28]. Unlike the original algorithms, for the SE 

based partitioning of the data the structure of the 

compounds was encoded as 1024 bits 

Chemaxon’s Topological Fingerprints from 

GenerateMD program [26]; and the Tanimoto 

distance was selected as the distance metric. The 

radius of the spheres was varied between 0.05 

and 1.0 with a step of 0.05 

Molecular Descriptors 

The ISIDA Fragmentor software (freely 

available at http://infochim.u-

strasbg.fr/spip.php?rubrique49) was used to 

calculate 2D fragment descriptors [17,18]. 

Descriptors were calculated for the training 

dataset. Afterward, fragments with the same 

value for 99% of the samples were removed. The 

minimal Redundancy Maximal Relevance 

(mRMR) algorithm [19] was applied to the 

reduced data set to keep only the top 500 

fragments according to the MIQ score. The same 

subset of 500 fragments was then computed for 

the selection and external sets. 

Classification-based modeling methodology 

QSAR modeling for each dataset was 

performed using the previously proposed QSAR 

modeling framework. Here the main steps 

involved in the modeling process are 

summarized and the detailed description of the 

QSAR modeling framework is available in [9] 

Methodology of models ensemble for 

virtual screening 

For both targets QSAR models were first 

filtered, regardless the dataset partition or 

modeling approach they were obtained with, to 

ensure that only accurate, robust and predictive 

models remain eligible as ensemble members. 

For this step we set the same cutoff value of 0.75 

for the accuracy in predicting the training, 

selection and external datasets as well as in the 

cross-validation experiments. The models 

fulfilling these conditions were then clustered 

using the Hamming distance between the 

predictions they made on the external dataset to 

select a representative set of models to ensure 

diversity in the pool of base models. Clustering 

was carried out using the K-means algorithm 

implemented in MATLAB [28]. To obtain the 

optimal number of clusters we examined the 

silhouette plot [29] when the number of clusters 

varied between 3 and 50 and selected the number 

of clusters corresponding to the maximum of this 

plot. This procedure leads to the selection of 

NA2A and NMAOB representative models which 

form the final pool of diverse models candidates 

for ensembles. 

To build the ensembles for VS we followed 

the same protocol described in our previous 

publication [9]. In brief, for a given subset of 

QSAR models forming the ensemble and a 

dataset to be evaluated we first search for the 

samples included within each model applicability 

domain. Next, the scores produced by each 

model for the compounds inside its applicability 

domain are used to obtain a ranking for them and 

the relative ranking of each sample in each 

model is computed. Once the relative rank of 

every sample in each model considering the 

model’s applicability domain is determined, 

these relative rank values are averaged over the 

models the compound is inside their applicability 

domains to obtain the final aggregated score. 

Finally, the compounds are sorted according to 

this aggregated score in ascending order to obtain 

the final ensemble ranking. 

Given that to evaluate the virtual screening 

performance of all ensembles formed by all 

possible combination of size two to NA2A+NMAOB 

of the selected models is computationally 

unfeasible, we implemented a novel GA search 

strategy which could find combinations of 
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models maximizing the EF at a given fraction of 

screened data. Each individual for the GA search 

represents an ensemble and they are encoded as 

binary vectors of length NA2A+NMAOB. In an 

individual the “on” bits encode the set of models 

considered for the ensemble while “off” bits 

represent models excluded from the ensemble. 

The initial population was set to 100 randomly 

generated individuals and the population evolved 

for 100 generations. The crossover and mutation 

rates were set to 0.7 and 0.3 respectively while 

the best two individuals survived to the next 

generation. The selection operator was set to a 

tournament of size 2. For the crossover operator, 

the offspring chromosomes were randomly 

selected position by position from the two 

selected parents. The mutation operator changed 

a randomly selected “on” bit to “off” and one 

randomly selected “off” bit to “on” in the 

individual. In each case study the GA was run 

five times using different initial populations. The 

objective function for the GA was selected as 

BEDROC for α=160. 

..

4. Conclusions 

We designed a methodology for the generation of virtual screening tailored ensembles capable of 

overcoming the previously identified problems. This methodology considered the diversity of the base 

models for ensemble generation and their applicability domains. The main advantage of the proposed 

algorithm is that it is able of finding the combination of models providing the best VS performance for 

a specific problem. 

The proposed algorithm was applied to the VS simulation of dual target A2A adenosine receptor 

antagonists and MAO-B inhibitors. The obtained results showed that the obtained ensemble 

outperformed the best individual model according to the evaluated enrichment metrics. Thus, 

confirming the expected improved performance of ensemble models over single ones. In the specific 

problem being addressed, the results of the ensemble modeling process highlighted the importance of 

considering information from both targets for the discovery of dual target ligands. 
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