# The Particle as a Statistical Ensemble of Events in Stueckelberg-Horwitz-Piron Electrodynamics 

$3^{r d}$ International Electronic and Flipped Conference on Entropy and its Applications

Martin Land

Hadassah College
Jerusalem
www.hadassah.ac.il/cs/staff/martin

November 2016

## Stueckelberg Covariant Mechanics

Worldline Theory of Particles and Antiparticles (1941)

Dynamical theory of spacetime events

- Equations of motion for event $x^{\mu}(\tau)$
- Evolution of $x^{\mu}(\tau)$ traces worldline
- Coordinate time $t=x^{0}$ may increase or decrease under evolution
- Single worldline describes pair annihilation and creation

Requires new evolution parameter $\tau$

- Monotonic replacement for $t=x^{0}$
- Poincaré invariant
- Independent of spacetime coordinates
- Distinguishes chronological time $\tau$ and coordinate time $x^{0}$


Worldlines
Type A. Usual type, with one solution to $t(\tau)=x^{0}$ for each $x^{0}$
Type B. Annihilation type, with two solutions to $t(\tau)=x^{0}$ for $x^{0} \ll 0$ and no solutions for $x^{0} \gg 0$
Type C. Creation type, with two solutions to $t(\tau)=x^{0}$ for $x^{0} \gg 0$ and no solutions for $x^{0} \ll 0$

Translated from: E. C. G. Stueckelberg, Helv. Phys. Acta 14 (1941) 322.

## Covariant Canonical Mechanics

Upgrade nonrelativistic classical and quantum mechanics


Inherit methods of nonrelativistic classical and quantum mechanics

$$
K=\frac{1}{2 M} p^{\mu} p_{\mu} \quad \longrightarrow\left\{\begin{array}{cc}
\dot{x}^{\mu}=\frac{\partial K}{\partial p_{\mu}}=\frac{p^{\mu}}{M} & \dot{p}^{\mu}=-\frac{\partial K}{\partial x_{\mu}}=0 \\
\hline \dot{x}^{0}=\frac{p^{0}}{M} \\
\dot{\mathbf{x}}=\frac{\mathbf{p}}{M}
\end{array}\right\} \quad \longrightarrow \quad \begin{gathered}
\frac{d \mathbf{x}}{d t}=\frac{\mathbf{p}}{p^{0}}
\end{gathered}
$$

Free particle permits reparameterization $\tau \longrightarrow t$

## Covariant Mechanics with Interactions

Two-body Hamiltonian — Horwitz and Piron (1973)

$$
K=\frac{p_{1 \mu} p_{1}^{\mu}}{2 M_{1}}+\frac{p_{2 \mu} p_{2}^{\mu}}{2 M_{2}}+V\left(x_{1}, x_{2}\right)
$$

Generalize classical central force problems

$$
V\left(x_{1}, x_{2}\right)=V(\rho) \quad \text { where } \quad \rho=\sqrt{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{2}-\left(t_{1}-t_{2}\right)^{2}}
$$

Separation of center of mass and relative motion
where

$$
K=\frac{P^{\mu} P_{\mu}}{2 M}+\frac{p^{\mu} p_{\mu}}{2 m}+V(\rho)=\frac{P^{\mu} P_{\mu}}{2 M}+K_{r e l}
$$

$$
P^{\mu}=p_{1}^{\mu}+p_{2}^{\mu} \quad p^{\mu}=\frac{M_{2} p_{1}^{\mu}-M_{1} p_{2}^{\mu}}{M} \quad M=M_{1}+M_{2} \quad m=\frac{M_{1} M_{2}}{M}
$$

Relativistic bound states and scattering solutions
Selection rules, radiative transitions, perturbation theory, Zeeman and Stark effects, bound state decay

4-vector and scalar potentials required to reproduce well-known phenomenology

## Stueckelberg-Horwitz-Piron (SHP) Canonical Mechanics

- Irreducible chronological time $\tau$ - determines temporal ordering of events
- Order of physical occurrence may differ from order of observed coordinate times $x^{0}$ as events appear in measuring apparatus
- Event occurrence $x^{\mu}\left(\tau_{1}\right)$ at $\tau_{1}$ is irreversible - unchanged by subsequent ( $\tau_{2}>\tau_{1}$ ) event at same spacetime coordinates $x^{\mu}\left(\tau_{2}\right)=x^{\mu}\left(\tau_{1}\right)$
- Resolves grandfather paradoxes
- No closed timelike curves - return trip to past coordinate time $x^{0}$ takes place while chronological time $\tau$ continues to increase
- In SHP QED, particle propagator $G\left(x_{2}-x_{1}, \tau_{2}-\tau_{1}\right)$ vanishes unless $\tau_{2}>\tau_{1}$
- Super-renormalizable QED with no matter loops
- $\tau$-retarded causality equivalent to Feynman contour for propagators - follows from vacuum expectation value of $\tau$-ordered operator products
- Covariant Hamiltonian generates evolution of 4D block universe defined at $\tau$ to infinitesimally close 4D block universe defined at $\tau+d \tau$
- Standard Maxwell electrodynamics = equilibrium limit Dynamic system $\rightarrow \tau$-independent and static 4D block universe


## Stueckelberg-Horwitz-Piron (SHP) Electrodynamics

Unified gauge theory - Saad, Horwitz, and Arshansky (1989)
Generalized Stueckelberg-Schrodinger equation

$$
i \hbar \partial_{\tau} \psi(x, \tau)=K \psi(x, \tau)=\left[\frac{1}{2 M}\left(p^{\mu}-\frac{e}{c} a^{\mu}\right)\left(p_{\mu}-\frac{e}{c} a_{\mu}\right)-\frac{e}{c} \phi\right] \psi(x, \tau)
$$

Invariant under local gauge transformations

$$
\psi(x, \tau) \rightarrow e^{\frac{i e}{\hbar c} \Lambda(x, \tau)} \psi(x, \tau)
$$

Vector potential $\quad a_{\mu}(x, \tau) \rightarrow a_{\mu}(x, \tau)+\partial_{\mu} \Lambda(x, \tau)$
Scalar potential $\quad \phi(x, \tau) \rightarrow \phi(x, \tau)+\partial_{\tau} \Lambda(x, \tau)$
Global gauge invariance $\longrightarrow$ conserved current $\quad \partial_{\mu} j^{\mu}+\partial_{\tau} \rho=0$

$$
j^{\mu}=-\frac{i}{2 M}\left\{\psi^{*}\left(\partial^{\mu}-\frac{i e}{c} a^{\mu}\right) \psi-\psi\left(\partial^{\mu}+\frac{i e}{c} a^{\mu}\right) \psi^{*}\right\} \quad \rho=|\psi(x, \tau)|^{2}
$$

## 5D Notations and Conventions

Formal designations in analogy with $x^{0}=c t$

$$
x^{5}=c_{5} \tau \quad \text { and } \quad \partial_{5}=\frac{1}{c_{5}} \partial_{\tau}
$$

Five explicitly $\tau$-dependent gauge fields $a_{\mu}(x, \tau)$ and $a_{5}(x, \tau)=\frac{1}{c_{5}} \phi(x, \tau)$
Index conventions

$$
\begin{gathered}
\lambda, \mu, \nu=0,1,2,3 \quad \text { and } \quad \alpha, \beta, \gamma=0,1,2,3,5 \\
g_{\alpha \beta}=\operatorname{diag}(-1,1,1,1, \pm 1)
\end{gathered}
$$

Gauge transformations

$$
a_{\alpha}(x, \tau) \rightarrow a_{\alpha}(x, \tau)+\partial_{\alpha} \Lambda(x, \tau)
$$

Conserved current

$$
\partial_{\alpha} j^{\alpha}=0
$$

## Classical Lagrangian Mechanics

Lagrangian

$$
L=\dot{x}^{\mu} p_{\mu}-K=L=\frac{1}{2} M \dot{x}^{\mu} \dot{x}_{\mu}+\frac{e}{c} \dot{x}^{\alpha} a_{\alpha}
$$

Lorentz force

$$
\begin{gathered}
\frac{d}{d \tau} \frac{\partial L}{\partial \dot{x}_{\mu}}-\frac{\partial L}{\partial x_{\mu}}=0 \longrightarrow \frac{d}{d \tau}\left[M \dot{x}^{\mu}+\frac{e}{c} a^{\mu}(x, \tau)\right]=\frac{e}{c} \dot{x}^{\alpha} \partial^{\mu} a_{\alpha}(x, \tau) \\
M \ddot{x}^{\mu}=\frac{e}{c}\left[\dot{x}^{\alpha} \partial^{\mu} a_{\alpha}-\left(\dot{x}^{\nu} \partial_{\nu}+\partial_{\tau}\right) a^{\mu}\right]=\frac{e}{c} f^{\mu}{ }_{\alpha}(x, \tau) \dot{x}^{\alpha}
\end{gathered}
$$

where

$$
f_{\alpha}^{\mu}=\partial^{\mu} a_{\alpha}-\partial_{\alpha} a^{\mu} \quad \dot{x}^{5}=c_{5} \dot{\tau}=c_{5}
$$

Particles and fields may exchange mass

$$
\frac{d}{d \tau}\left(-\frac{1}{2} M \dot{x}^{2}\right)=g_{55} \frac{e c_{5}}{c} f^{5 \mu} \dot{x}_{\mu}
$$

## Kinetic Term for Field

## Standard considerations

Velocity-potential $\rightarrow$ current-potential integral

$$
\begin{gathered}
\dot{X}^{\alpha} a_{\alpha} \rightarrow \int d^{4} x \dot{X}^{\alpha}(\tau) \delta^{4}(x-X(\tau)) a_{\alpha}(x, \tau)=\frac{1}{c} \int d^{4} x j^{\alpha}(x, \tau) a_{\alpha}(x, \tau) \\
j^{\alpha}(x, \tau)=c \dot{X}^{\alpha}(\tau) \delta^{4}(x-X(\tau))
\end{gathered}
$$

Kinetic action term for field

- Not imposed by physical foundations
- Most obvious candidate $\quad \mathcal{L}_{\text {kinetic }}=\frac{1}{4 c} f^{\alpha \beta}(x, \tau) f_{\alpha \beta}(x, \tau)$
- Lorentz and gauge invariant
- Contains only first order derivatives
- Produces Maxwell-like field equations
- Admits wave equation and Green's function
- Coulomb scattering $\rightarrow$ wrong dynamics $\quad a^{0}(x, \tau)=\frac{e}{4 \pi|\mathbf{x}|} \delta\left(\tau-\left(t-\frac{|\mathbf{x}|}{c}\right)\right)$


## Kinetic Term for Field

Higher-order derivative term $\quad f^{\alpha \beta} f_{\alpha \beta} \rightarrow f^{\alpha \beta} f_{\alpha \beta}+(\lambda / 2)^{2}\left(\partial_{\tau} f^{\alpha \beta}\right)\left(\partial_{\tau} f_{\alpha \beta}\right)$

## Electromagnetic action

$$
S_{\mathrm{em}}=\int d^{4} x d \tau\left\{\frac{e}{c^{2}} j^{\alpha}(x, \tau) a_{\alpha}(x, \tau)-\int \frac{d s}{\lambda} \frac{1}{4 c}\left[f^{\alpha \beta}(x, \tau) \Phi(\tau-s) f_{\alpha \beta}(x, s)\right]\right\}
$$

Field interaction kernel

$$
\Phi(\tau)=\delta(\tau)-\left(\frac{\lambda}{2}\right)^{2} \delta^{\prime \prime}(\tau)=\int \frac{d \kappa}{2 \pi}\left[1+\left(\frac{\lambda \kappa}{2}\right)^{2}\right] e^{-i \kappa \tau}
$$

Inverse function

$$
\int \frac{d s}{\lambda} \varphi(\tau-s) \Phi(s)=\delta(\tau) \rightarrow \varphi(\tau)=\lambda \int \frac{d \kappa}{2 \pi} \frac{e^{i \kappa \tau}}{1+(\lambda \kappa / 2)^{2}}=e^{-2|\tau| / \lambda}
$$

Field equations
Variation wrt $a_{\alpha} \quad \partial_{\beta} f_{\Phi}^{\alpha \beta}(x, \tau)=\partial_{\beta} \int d s \Phi(\tau-s) f^{\alpha \beta}(x, s)=\frac{e}{c} j^{\alpha}(x, \tau)$
Invert with $\varphi \quad \partial_{\beta} f^{\alpha \beta}(x, \tau)=\frac{e}{c} \int d s \varphi(\tau-s) j^{\alpha}(x, s)=\frac{e}{c} j_{\varphi}^{\alpha}(x, \tau)$

## Ensemble of Events

Shift integral in current

$$
j_{\varphi}^{\alpha}(x, \tau)=\int d s \varphi(\tau-s) j^{\alpha}(x, s)=\int d s e^{-2|s| / \lambda} j^{\alpha}(x, \tau-s)
$$

$j_{\varphi}^{\alpha}(x, \tau)=$ weighted superposition of instantaneous currents $j^{\alpha}(x, \tau-s)$
Originate at events $X^{\mu}(\tau-s)$ displaced from $X^{\mu}(\tau)$ by $s$ on worldline
Regard $j_{\varphi}^{\alpha}$ as current produced by ensemble of events in neighborhood of $X^{\mu}(\tau)$
Independent random events with constant average rate $=1 / \lambda$ events per second
Poisson distribution of events
Average time between events $=\lambda$
Probability $e^{-s / \lambda} / \lambda$ at $\tau$ that next event will occur following time interval $s>0$
Extend displacement to positive and negative values: $e^{-2|s| / \lambda}$
Construct ensemble of events $\varphi(s) X^{\mu}(\tau-s)$ along worldline
Weight $\varphi(s)=$ probability of event delayed from $\tau$ by interval at least $|s|$
Green's function selects from ensemble unique event at lightlike separation

## Field Equations

5D pre-Maxwell equations

$$
\partial_{\beta} f^{\alpha \beta}(x, \tau)=\frac{e}{c} j_{\varphi}^{\alpha}(x, \tau) \quad \epsilon^{\alpha \beta \gamma \delta \epsilon} \partial_{\alpha} f_{\beta \gamma}=0
$$

4D component form

$$
\begin{array}{ll}
\partial_{v} f^{\mu v}-\frac{1}{c_{5}} \partial_{\tau} f^{5 \mu}=\frac{e}{c} j_{\varphi}^{\mu} & \partial_{\mu} f^{5 \mu}=\frac{e}{c} j_{\varphi}^{5}=\frac{c_{5}}{c} e \rho_{\varphi} \\
\partial_{\mu} f_{v \rho}+\partial_{\nu} f_{\rho \mu}+\partial_{\rho} f_{\mu v}=0 & \partial_{\nu} f_{5 \mu}-\partial_{\mu} f_{5 v}+\frac{1}{c_{5}} \partial_{\tau} f_{\mu v}=0
\end{array}
$$

Analog of 3-vector Maxwell equations

$$
\begin{array}{ll}
\nabla \times \mathbf{B}-\frac{1}{c} \partial_{t} \mathbf{E}=\frac{e}{c} \mathbf{J} & \nabla \cdot \mathbf{E}=\frac{e}{c} J^{0} \\
\nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{E}+\frac{1}{c} \partial_{t} \mathbf{B}=0
\end{array}
$$

## Mass-Energy-Momentum Tensor

Noether symmetry ~ translation invariance

$$
T^{\alpha \beta}=-\left(g^{\alpha \beta} f_{\Phi}^{\delta \gamma} f_{\delta \gamma}-f_{\gamma}^{\alpha} f_{\Phi}^{\beta \gamma}\right) \quad \partial_{\beta} T^{\alpha \beta}=\frac{e}{c} f^{\alpha \beta} j_{\alpha}
$$

Classical conservation law

$$
\begin{aligned}
& \int d^{4} z \partial_{\beta} T^{\alpha \beta}=\int d^{4} z \partial_{\mu} T^{\alpha \mu}+\int d^{4} z \partial_{5} T^{\alpha 5}=\frac{d}{d \tau} \int d^{4} z T^{5 \alpha} \\
& \frac{e}{c} \int d^{4} z f^{\alpha \beta}(z, \tau) j_{\alpha}(z, \tau)=\frac{e}{c} \int d^{4} z f^{\alpha \beta}(z, \tau) \dot{x}_{\alpha}(\tau) \delta^{4}(z-x) \\
&=\frac{e}{c} f^{\alpha \beta}(x, \tau) \dot{x}_{\alpha}(\tau) \\
& \frac{d}{d \tau}\left(\int d^{4} z T^{5 \mu}+M \dot{x}^{\mu}\right)= 0 \quad \frac{d}{d \tau}\left(\int d^{4} z T^{55}-\frac{1}{2} M \dot{x}^{2}\right)=0
\end{aligned}
$$

Total mass-energy-momentum of particle + field conserved

## Wave Equation and Greens Function

Wave equation

$$
\partial_{\beta} \partial^{\beta} a^{\alpha}=\left(\partial_{\mu} \partial^{\mu}+\left(g_{55} / c_{5}^{2}\right) \partial_{\tau}^{2}\right) a^{\alpha}=-\frac{e}{c} j_{\varphi}^{\alpha}(x, \tau)
$$

Greens function

$$
\partial_{\beta} \partial^{\beta} a^{\alpha}=\left(\partial_{\mu} \partial^{\mu}+\left(g_{55} / c_{5}^{2}\right) \partial_{\tau}^{2}\right) G(x, \tau)=-\delta^{4}(x, \tau)
$$

Principal part solution

$$
\begin{aligned}
G_{P}(x, \tau) & =-\frac{1}{2 \pi} \delta\left(x^{2}\right) \delta(\tau)-\frac{c_{5}}{2 \pi^{2}} \frac{\partial}{\partial x^{2}} \frac{\theta\left(-g_{55} g_{\alpha \beta} x^{\alpha} x^{\beta}\right)}{\sqrt{-g_{55} g_{\alpha \beta} x^{\alpha} x^{\beta}}} \\
& =G_{\text {Maxwell }}+G_{\text {Correlation }}
\end{aligned}
$$

Contribution from $G_{\text {Correlation }}$
Smaller than $G_{\text {Maxwell }}$ by $c_{5} / c$ and drops off as $1 /|\mathbf{x}|^{2}$
Neglected at low energy

## Liénard-Wiechert potential

Arbitrary event $X^{\mu}(\tau)$ produces current

$$
j_{\varphi}^{\alpha}(x, \tau)=\int d s \varphi(\tau-s) \dot{X}^{\alpha}(s) \delta^{4}[x-X(s)]
$$

Green's function selects unique event from ensemble at lightlike separation

$$
\int d \tau f(\tau) \delta[g(\tau)]=\frac{f\left(\tau_{R}\right)}{\left|g^{\prime}\left(\tau_{R}\right)\right|} \quad, \quad \tau_{R}=g^{-1}(0)
$$

Retarded time $\tau_{R}$ satisfies $\left(x-X\left(\tau_{R}\right)\right)^{2}=0$ and $x^{0}-X^{0}\left(\tau_{R}\right)>0$
Potential

$$
\begin{aligned}
a^{\alpha}(x, \tau) & =\frac{e}{2 \pi} \int d s \varphi(\tau-s) \dot{X}^{\alpha}(s) \delta\left[\left(x-X^{\alpha}(s)\right)^{2}\right] \\
& =\frac{e}{4 \pi} \varphi\left(\tau-\tau_{R}\right) \frac{\dot{X}^{\alpha}\left(\tau_{R}\right)}{\left|\left(x^{\mu}-X^{\mu}\left(\tau_{R}\right)\right) \dot{X}_{\mu}\left(\tau_{R}\right)\right|}
\end{aligned}
$$

Standard Liénard-Wiechert potential $\times$ factor $\varphi$ containing $\tau$-dependence

## Low Energy Limit

Nonrelativistic Coulomb problem
'Static' event evolving along $x^{0}$-axis

$$
x(\tau)=(c \tau, 0,0,0)
$$

Potential

$$
a^{0}(x, \tau)=\frac{e}{4 \pi|\mathbf{x}|} \varphi\left(\tau-\left(t-\frac{|\mathbf{x}|}{c}\right)\right) \quad a^{5}(x, \tau)=\frac{c_{5}}{c} a^{0}(x, \tau)
$$

Test event on parallel trajectory at

$$
x(\tau)=(c \tau, \mathbf{x})
$$

Yukawa-type potential

$$
a^{0}(x, \tau)=\frac{e}{4 \pi|\mathbf{x}|} e^{-|\mathbf{x}| / \lambda c}
$$

Photon mass $m_{\gamma} \sim \hbar / \lambda c^{2}$
$m_{\gamma} \sim$ experimental error on photon mass $=10^{-18} \mathrm{eV} / \mathrm{c}^{2} \Rightarrow \lambda>10^{-2} \mathrm{sec}$

## Concatenation

Conserved Maxwell current - Stueckelberg's argument

$$
\partial_{\alpha} j^{\alpha}=\partial_{\mu} j^{\mu}+\partial_{\tau} \rho=0 \quad \longrightarrow \quad \partial_{\mu} J^{\mu}(x)=\partial_{\mu} \int_{-\infty}^{\infty} d \tau j^{\mu}(x, \tau)=0
$$

Following Stueckelberg

$$
\left.\begin{array}{c}
\partial_{\beta} f^{\alpha \beta}(x, \tau)=\frac{e}{c} j^{\alpha}(x, \tau) \\
\partial_{[\alpha} f_{\beta \gamma]}=0
\end{array}\right\} \xrightarrow[\int d \tau]{ }\left\{\begin{array}{c}
\partial_{v} F^{\mu v}(x)=\frac{e}{c} J^{\mu}(x) \\
\partial_{[\mu} F_{v \rho]}=0
\end{array}\right.
$$

where

$$
F^{\mu v}(x)=\int_{-\infty}^{\infty} d \tau f^{\mu v}(x, \tau) \quad \text { and } \quad A^{\mu}(x)=\int_{-\infty}^{\infty} d \tau a^{\mu}(x, \tau)
$$

Aggregation of all events occurring at spacetime point $x$ over all $\tau$ SHP theory $\longrightarrow$ on-shell Maxwell theory $\sim$ equilibrium limit

## Static Limit

Two 'speeds of light' $c$ and $c_{5}$ in SHP
Elastic particle-particle and particle-antiparticle scattering depends on ( $1 \pm c_{5} / c$ )
Empirical requirement: $0<c_{5} / c \ll 1$
Static equilibrium - freeze microscopic system
Slow $\tau$-evolution to zero by taking $c_{5} / c \rightarrow 0$
Homogeneous pre-Maxwell equation imposes condition

$$
c_{5}\left(\partial_{\nu} f_{5 \mu}-\partial_{\mu} f_{5 v}\right)+\partial_{\tau} f_{\mu v}=0 \longrightarrow \partial_{\tau} f_{\mu v}=0
$$

$\tau$-dependence resides in $\varphi\left(\tau-\tau_{R}\right) \Longrightarrow \lambda \rightarrow \infty \Longrightarrow \varphi(\tau) \rightarrow 1, m_{\gamma} \rightarrow 0$
$\tau$-independent fields $\Longrightarrow$ pre-Maxwell equations $\longrightarrow$ Maxwell equations
Currents concatenate

$$
\begin{gathered}
j_{\varphi}^{\alpha}(x, \tau)=\int d s 1 \cdot j^{\alpha}(x, s)=J^{\alpha}(x) \Rightarrow j_{\varphi}^{\mu}(x, \tau)=J^{\mu}(x) \quad \partial_{\tau} j_{\varphi}^{5}=0 \\
\partial_{\mu} j_{\varphi}^{\mu}(x, \tau)+\frac{1}{c_{5}} \partial_{\tau} j_{\varphi}^{5}(x, \tau)=\partial_{\mu} J^{\mu}(x)=0
\end{gathered}
$$

