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Abstract: This paper investigates whether the dually flat geometries introduced by Amari are useful
as a tool to study the manifold of thermodynamic equilibrium states. The mathematical setting is
that of statistical models belonging to an exponential family. The metric tensor is derived from the
relative entropy. Flat geometries are introduced and thermodynamic length is calculated. The ideal
gas serves as an example.
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1. Introduction

The aim of the present contribution is to survey recent developments in information geometry
and to point out their relevance for thermodynamics and statistical physics. Information
geometry [1–4] is differential geometry used as an analytic tool in other domains such as statistics
and information theory. Before information geometry emerged as a sub-discipline of mathematics,
differential geometry was already applied to thermodynamics and statistical physics, starting with
the works of Weinhold [5] and of Ruppeiner [6]. See also [7–13].

An essential feature of thermodynamics is its dual structure. Equilibrium states can be
characterized either by intensive variables, or by corresponding extensive variables. Examples are
inverse temperature β and external magnetic field h for the intensive variables, total energy U and
total magnetization M for the extensive quantities. They are related via a pair of convex or concave
functions, in casu, the entropy S(U, M) and Massieu’s function Φ(β, h). In statistical physics the latter
is given by the logarithm of the partition sum. The relation between intensive and extensive variables
is based on Legendre transforms.

In the literature [10] the question was debated whether the geometry of the set of equilibrium
states can be derived from the metric of a Euclidean space in which the equilibrium states are
embedded. Behind this question resides the mathematical result that any Riemannian manifold
can be isometrically embedded in a Euclidean space. The present paper goes beyond Riemannian
manifolds. To clarify this point let me refresh some basic concepts of differential geometry. Two
objects determine the geometry of a differentiable manifold.

• The metric tensor g determines the length of vectors belonging to a tangent plane and the angles
between them. In the present work g is defined starting from the relative entropy D(p, pθ), which
is minus the entropy of an arbitrary probability distribution p when the equilibrium distribution
pθ is taken as the reference measure. See the next section. Mathematicians call the quantity
D(p, pθ) a divergence and use it as a means of determining g, which is then the Fisher information
metric.

• The metric tensor g does not suffice, one needs a notion of geodesics as well. Usually one
works with Riemannian geodesics which are determined by the Christoffel symbols Γk

ij and the
Levi-Civita connection. However, other connections are of interest as well. In particular, Amari [1]
introduced a couple of flat connections. One of them is the trivial connection, given the canonical
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coordinates of a model belonging to the exponential family. The other is its dual with respect to
the Levi-Civita connection. These concepts are discussed in Section 3.

Throughout the text the notation ∂i ≡ ∂/∂θi is used. Einstein’s summation convention
is followed.

2. Exponential Families

2.1. A Statistical Model

Starting point of Statistical Physics is that the probability p(x) of finding a classical system in the
state x is given by the Boltzmann–Gibbs distribution. In statistics such a model is said to belong to
the exponential family [14] because it can be written into the form

pθ(x) = exp(θkFk(x)− α(θ)). (1)

The probability distribution, written in this form, facilitates the calculation of certain expectation
values. Indeed, from the normalization of pθ(x) follows

0 = ∂k

∫
dx pθ(x) =

∫
dx pθ(x) [Fk(x)− ∂kα(θ)] . (2)

This implies Eθ Fk = ∂kα(θ), where Eθ Fk denotes the expectation of Fk(x) for the given values of the
parameters θk (Eθ Fk = 〈Fk〉θ in physicist’s notation).

Consider now the series expansion pθ+ε(x) = pθ(x) + εk pθ(x) [Fk(x)−Eθ Fk] + · · · . This
expression shows that the random variables Fk(x) − Eθ Fk can be identified with vectors tangent to
the manifold of model states at the given point pθ .

2.2. The Metric Tensor

At this point one can proceed in many ways. In a more general context such as that of [15,16] the
indicated way runs via the relative entropy, which for a model of the exponential family equals the
Kullback–Leibler divergence,

D(p, pθ) =
∫

dx p(x) log
p(x)
pθ(x)

. (3)

The relative entropy is related to the Boltzmann–Gibbs–Shannon entropy

S(p) = −
∫

dx p(x) log p(x) (4)

by

D(p, pθ) = S(pθ)− S(p) +
∫

dx [pθ(x)− p(x)] log pθ(x)

= S(pθ)− S(p) +
∫

dx [pθ(x)− p(x)]θkFk(x). (5)

The metric tensor g is defined by gij(θ) = ∂i∂jD(p, pθ)

∣∣∣∣
p=pθ

.

A short calculation gives gij(θ) =
∫

dx
1

pθ(x)

[
∂i pθ(x)

] [
∂j pθ(x)

]
.

The latter is a well-known expression for the Fisher information matrix.
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2.3. The Statistical Gradient

An inner product of pairs of random variables U, V is defined by

〈U, V〉θ =
∫

dx pθ(x)U(x)V(x). (6)

One has for any U(x)

∂iEθU =
∫

dx ∂i pθ(x)U(x) =
∫

dx pθ(x)∂i log(pθ(x))U(x) = 〈Fi −Eθ Fi, U −EθU〉θ . (7)

The estimator U − EU is (identified with) a tangent vector and is called the statistical gradient of the
expectation EθU. In particular one has

∂iEθ Fj =
〈

Fi −Eθ Fi, Fj −Eθ Fj
〉

θ
= gij(θ). (8)

The tangent vectors Fi − Eθ Fi span a Hilbert space. The elements of the metric tensor g(θ) determine
the length of these basis vectors and the angles between them.

2.4. Dual Parameters

The Massieu function Φ(θ) is the Legendre transform of the entropy. It is defined by

Φ(θ) = max
p
{S(p) + θkEpFk}, where EpFk =

∫
dx p(x)Fk(x). (9)

The maximum is reached for p = pθ . Because it is a Legendre transform one automatically has

∂iΦ(θ) = ηk with ηk = EpFk. (10)

The ηk can be used instead of the θk to parametrize the model. From

Φ(θ) = S(pθ) + θkηk follows that
∂

∂ηi
S(pθ) =

∂θ j

∂ηi
∂j

[
Φ(θ)− θkηk

]
= −θi. (11)

3. Flat Geometries

Whether the model pθ is flat or curved depends on the choice of connection. Up to now the
literature on differential geometry in thermodynamics always choose for the Riemannian curvature,
which is based on the Levi–Civita connection. However, the dually flat geometry of Amari [1–4]
offers an alternative.

3.1. Dual Connections

The Levi–Civita connection is determined by the Christoffel symbols

Γk
ij =

1
2

gks (∂igsj + ∂jgis − ∂sgij
)

, (12)

which are fully determined by the metric tensor g. Note that gkl are the matrix entries of the inverse
of the metric tensor g. Other connections are now considered. For the corresponding connection
coefficients the symbols ωk

ij are used instead of Γk
ij.

Two connections with coefficients ω and ω∗ are said to be each other dual if they satisfy

ωl
kigl j + gilω

∗l
kj = ∂kgij. (13)
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It is straightforward to verify in the present context that the Levi–Civita connection is the only
connection which is torsion free (i.e. Γk

ij = Γk
ji) and self-dual.

Given an exponential family and its canonical coordinates θk, it is obvious to consider the trivial
connection in which all connection coefficients vanish. The geodesic through two equilibrium states
pθ and pθ′ is then a straight line in parameter space. It satisfies

log p(1−t)θ+tθ′(x) = [(1− t)θk + tθ′k]Fk(x)− α(θ)

= (1− t) log pθ(x) + t log pθ′(x). (14)

It is known (see for instance Theorem 3.3 of [2]) that the dual of a flat connection is again a flat
connection. This implies that there exists another flat connection,which is fully determined by the
metric tensor g. From the definition (13) follows that its coefficients are given by

ωk
ij = gkl∂igjl = 2Γk

ij. (15)

3.2. Euler–Lagrange Equations

Let us now calculate the geodesic for the connection (15). Consider the time-dependent orbit
pγ(t). The connection coefficients appear in the Euler-Lagrange equations

γ̈k + ωk
ijγ̇

iγ̇j = 0. (16)

Let us verify that the solutions are of the form

γk(t) = θk[(1− t)η(1)
k + tη(2)

k ], (17)

where η(1) and η(2) are constant and θk[η] is the inverse function of ηk(θ). From (17) follows

γ̇k =
∂θk

∂ηi

(
η
(2)
i − η

(1)
i

)
= gki

(
η
(2)
i − η

(1)
i

)
(18)

γ̈k =
(

∂jgki
)

γ̇j
(

η
(2)
i − η

(1)
i

)
=
(

∂jgki
)

gjl
(

η
(2)
l − η

(1)
l

) (
η
(2)
i − η

(1)
i

)
. (19)

From the definition (15) follows ∂jgki = −gimωk
jm. Hence one obtains

γ̈k = −gimωk
jmgjl

(
η
(2)
l − η

(1)
l

) (
η
(2)
i − η

(1)
i

)
= −ωk

jmγ̇mγ̇j, (20)

which is (16). One concludes that for this connection the geodesics follow straight lines in the space
of the extensive parameters ηi.

3.3. Thermodynamic Length

The main advantage of a flat geometry is that it is easy to calculate path lengths. Fix two
equilibrium states with intensive parameters θ(1), respectively θ(2). The squared length of an
infinitesimal line segment is (ds)2 = gij(θ)dθidθ j. The geodesic γ connecting the two points has
coordinates

γk(t) = (1− t)θk
(1) + tθk

(2). (21)

The length of the path between the two points equals

L(θ(1), θ(2)) =
∫

γ
ds =

∫
γ

√
gij(θ)dθidθ j =

√
gij

[
θi
(2) − θi

(1)

] [
θ

j
(2) − θ

j
(1)

]
(22)
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with

gij =

[∫ 1

0
dt
√

gij(γ(t))
]2

. (23)

Similarly, let η(1) and η(2) be the extensive parameters corresponding with η(1), respectively η(2).
The path linear in the η-space is determined by ηk(γ(t)) = (1− t)η(1)

k + tη(2)
k . The length along this

path equals

L∗(η(1), η(2)) =

√
gij
[
η
(2)
i − η

(1)
i

] [
η
(2)
j − η

(1)
j

]
with gij =

[∫ 1

0
dt
√

gij(γ(t))
]2

. (24)

3.4. Example

The Massieu function of the ideal gas in a volume V can be written as (see for instance [14])

Φ(β, µ) =
V
V0

eβµ

(
β0

β

)3/2
. (25)

Here, β is the inverse temperature and µ is the chemical potential.
The probability distribution pθ belongs to the exponential family with θ1 = β/β0 and θ2 = βµ.

A short calculation gives

η1 = − 3
2θ1 Φ and η2 = Φ and g(θ) =

1
θ1 Φ

(
15
4θ1 − 3

2
− 3

2 θ1

)
. (26)

Translated in the usual symbols of physics the latter becomes (see for instance Section 1.6 of [14])

g(θ) = pV

(
15β0/4β − 3

2
− 3

2 β/β0

)
, (27)

where p is the pressure and is related to Massieu’s function and the total number of particles N by
βpV = Φ = N. The connection ω, defined by (15), equals 2Γ. The Christoffel symbols are given by

Γ1 =

(
−5/2θ1 1/2
1/2 0

)
and Γ2 =

(
−15/8[θ1]2 0
0 1/2

)
. (28)

A tedious calculation shows that all coefficients of the Riemann curvature tensor vanish. Hence the
Riemannian geometry is also flat. This is an artifact due to the absence of interactions in the ideal gas
model (see [6]).

Consider for instance an isotherm, this is, β is kept constant. Then a path of the form (21) changes
the chemical potential µ from µ(1) to µ(2) in a linear way. The length of such a path equals

L(θ(1), θ(2)) = β|µ(2) − µ(1)|
∫ 1

0
dt
√

g22((1− t)θ1 + tθ2)

= β|µ(2) − µ(1)|
√

Φ(β, µ(1))
∫ 1

0
dt etβ(µ(2)−µ(1))/2

= 2
∣∣∣∣√Φ(β, µ(2))−

√
Φ(β, µ(1))

∣∣∣∣ = 2|
√

N(2) −
√

N(1)|. (29)

On the other hand, when the path is linear in η-space, then both Φ and Φ/θ1 are changed in a linear
way. For instance, keep η1 − 3

2θ1 Φ ∼ pV constant. Then the density ρ = N/V is proportional to the
inverse temperature β. The length along such a path is proportional the change in Massieu’s function
Φ = N.
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4. Discussion

The geometry of the manifold of thermodynamic equilibrium states is a long-standing topic of
interest in thermodynamics and in statistical physics. The relation between curvature and interactions
is being studied since the pioneering work of Ruppeiner [6]. The obvious context is the Riemannian
geometry, which is based on the Levi-Civita connection. Recently, Amari [1] introduced dually flat
geometries as an alternative tool to analyze statistical manifolds. The present work starts from the
observation that the dual structure of thermodynamics is based on the same convex analysis as
Amari’s duality. The paper shows in the simple case of the ideal gas that these flat geometries have
a thermodynamic meaning as well. Further research is needed to explore possible advantages of the
present approach, in particular, when applied to interacting models.
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