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Abstract: This paper provides an entropy inference method based on an objective Bayesian
approach for upper record values having the two-parameter logistic distribution. We derive the
entropy based on i-th upper record value and the joint entropy based on the upper record values,
and examine their properties. For objective Bayesian analysis, we provide objective priors such as
the Jeffreys and reference priors for unknown parameters of the logistic distribution based on upper
record values. Then, an entropy inference method based on the objective priors is developed. In real
data analysis, we assess the quality of the proposed models under the objective priors.
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1. Introduction

Shannon [1] proposed information theory to quantify information loss and introduces statistical
entropy. Baratpour et al. [2] provided the entropy of a continuous probability distribution
with upper record values and several bounds for this entropy by using the hazard rate function.
Abo-Eleneen [3] suggested an efficient computation method for entropy in progressively Type-II
censored samples. Kang et al. [4] derived estimators of the entropy of a double-exponential
distribution based on multiply Type-II censored samples by using maximum likelihood estimators
(MLEs) and approximate MLEs (AMLEs). Seo and Kang [5] developed estimation methods for
entropy by using estimators of the shape parameter in the generalized half-logistic distribution based
on Type-II censored samples.

This paper provides an entropy inference method based on an objective Bayesian approach for
upper record values having the two-parameter logistic distribution. The cumulative distribution
function (cdf) and probability density function (pdf) of the random variable X with this distribution
are given by

F(x) =
1

1 + e−(x−µ)/σ

and

f (x) =
e−(x−µ)/σ

σ
[
1 + e−(x−µ)/σ

]2 , x ∈ R, µ ∈ R, σ > 0, (1)

where µ is the location parameter and σ is the scale parameter.
The rest of this paper is organized as follows: Section 2 provides the jeffreys and reference

priors, and derives the entropy inference method based on the provided noninformative priors.
Section 3 analyses a rea data set to show the validity of the proposed method, and Section 4 concludes
this paper.
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2. Objective Bayesian Analysis

2.1. Objective Priors

Let XU(i), . . . , XU(k) be the upper record values X1, . . . , Xn from the logistic distribution with
pdf (1). Then the corrsponding likelihood function is given by

L(µ, σ) = f
(

xU(k)

) k−1

∏
i=1

f
(

xU(i)

)
1− F

(
xU(i)

)
=

(
1
σ

)k exp
[
−
(

xU(k) − µ
)

/σ
]

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
] .

The FIsher information matrix for (µ, σ) is given by

I(µ, σ) = −

 E
(

∂2

∂µ2 log L(µ, σ)

)
E
(

∂2

∂µ∂σ
log L(µ, σ)

)
E
(

∂2

∂σ∂µ
log L(µ, σ)

)
E
(

∂2

∂σ2 log L(µ, σ)

)
 , (2)

By the result provided in Asgharzadeh et al. [9], all elements of the Fisher information (2) are
proportional to 1/σ2. Therefore, the Jeffreys prior is

πJ(µ, σ) ∝
1
σ2 (3)

by the definition that it is proportional to the square root of the determinant of the Fisher information.
However, the Jeffreys prior has some drawbacks for multi-parameter case such as marginalization
paradox, Neyman–Scott problem, and so on. Alternately, Bernardo [10] introduced the reference
prior, and Berger and Bernardo [11,12] provided a general algorithm for deriving the reference prior.
By using the algorithm, we can obtain the reference prior (µ, σ) as

πR(µ, σ) ∝
1
σ

, (4)

regardless which parameter is of interest.
Unfortunately, it is impossible to express in closed forms the marginal distribution for µ and σ

under the objective priors (3) and (4). To generate the Markov chain Monte Carlo (MCMC) samples
from the marginal distributions, we should conduct a MCMC technique.

The full conditional posterior distribution for µ and σ under a joint prior π(µ, σ) are given by

π(µ|σ, x) ∝ π(µ, σ)
exp (µ/σ)

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
] (5)

and

π(σ|µ, x) ∝ π(µ, σ)

(
1
σ

)k exp
[
−
(

xU(k) − µ
)

/σ
]

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
] , (6)

respectively.
Under both objective priors (3) and (4), the full conditional posterior distribution (5) is

log-concave. Therefore, we can draw the MCMC samples µi(i = 1, . . . , N) from the conditional
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posterior distribution (5) by using the method proposed by Devroye [13]. We also need to note the
fact that σ ∈ R+, but µ ∈ R and XU(i) ∈ R. In this case, it is not easy to find a suitable proposal
distribution for drawing the MCMC samples σi(i = 1, . . . , N) from the full conditional posterior
distribution (6). Therefore, we employ the random-walk Metropolis algorithm based on a normal
proposal distribution truncated at zero.

2.2. Entropy

Theorem 1. The entropy based on ith upper record value XU(i) is

HU(i) = log Γ(i) + log σ + i− (i− 1)ψ(i) +
∞

∑
j=1

1
j(j + 1)i . (7)

Remark 1. It is clear that the entropy (7) is an increasing function of σ. Therefore, the larger σ, the
less information is provided by the distribution due to increasing entropy.

Remark 2. We can obtain the following relationships between two adjacent entropies:

lim
i→∞

[
HU(i+1) − HU(i)

]
= lim

i→∞

[
log(i− 1)− ψ(i− 1) +

∞

∑
j=1

(
1

j(j + 1)i −
1

j(j + 1)i−1

)]

= lim
i→∞

{
∞

∑
j=0

[(
1

i− 1 + j

)
− log

(
1 +

1
i− 1 + j

)]}
= 0.

Theorem 2. The joint entropy based on XU(1), . . . , XU(k) is

HU(1),...,U(k) = k (1 + log σ) +
k

∑
i=1

∞

∑
j=1

1
j(j + 1)i , (8)

which is an increasing function of σ as Remaek 1.

Proof. The joint entropy based on upper record values XU(1), . . . , XU(k) is defined by Park [14] as

HU(1),...,U(k) =−
∫ ∞

−∞
· · ·

∫ xU(2)

−∞
fXU(1),...,XU(k)(xU(1),...,xU(k))

× log fXU(1),...,XU(k)(xU(1),...,xU(k))
dxU(1), . . . , dxU(k),

where fXU(1),...,XU(k)(xU(1),...,xU(k))
is the joint density function of xU(1), . . . , xU(k). In addition, it is

simplified to a single-integral by Rad et al. [15] as

HU(1),...,U(k) =
k(1− k)

2
−

k

∑
i=1

∫ ∞

−∞

1
Γ(i)

[− log(1− F(x))]i−1 f (x) log f (x)dx (9)

Then the integral term in (9) is given by∫ ∞

−∞

1
Γ(i)

[− log(1− F(x))]i−1 f (x) log f (x)dx =− log σ− 2
∫ ∞

0
yie−ydy

+
∫ ∞

0
yi−1e−y log (ey − 1) dy
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by using

log
(

z
z− 1

)
=

∞

∑
j=1

1
jzj , z ≤ −1 or z > 1.

This completes the proof.

We present these changes of the entropy (7) and the entropy (8) in Tables 1, 2 and Figure 1.

Table 1. Entropy based on ith upper record value XU(i).

HHH
HHσ

i
1 2 3 4 5 6 7 8 9 10

0.1 −0.303 −0.370 −0.302 −0.208 −0.115 −0.029 0.048 0.117 0.179 0.234
0.5 1.307 1.239 1.307 1.401 1.494 1.580 1.657 1.727 1.788 1.844
1 2.000 1.932 2.001 2.094 2.187 2.273 2.351 2.420 2.481 2.537
2 2.693 2.625 2.694 2.787 2.880 2.966 3.044 3.113 3.175 3.230
4 3.386 3.319 3.387 3.480 3.574 3.660 3.737 3.806 3.868 3.923
8 4.079 4.012 4.080 4.174 4.267 4.353 4.430 4.499 4.561 4.616

Table 2. Joint entropy based on XU(1), . . . , XU(k).

HH
HHHσ

k
1 2 3 4 5 6 7 8 9 10

0.1 −0.303 −1.250 −2.400 −3.632 −4.900 −6.187 −7.481 −8.780 −10.080 −11.382
0.5 1.307 1.969 2.429 2.806 3.147 3.470 3.785 4.096 4.405 4.712
1 2.000 3.355 4.508 5.579 6.612 7.629 8.637 9.641 10.643 11.644
2 2.693 4.741 6.587 8.351 10.078 11.788 13.489 15.186 16.881 18.575
4 3.386 6.128 8.667 11.124 13.544 15.947 18.341 20.731 23.120 25.507
8 4.079 7.514 10.746 13.896 17.010 20.106 23.193 26.276 29.358 32.438
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Figure 1. Entropy for upper record values.

Here, we need to note that σ is unknown parameter and should be estimated when real
data are observed. The following theorem provides an estimator of the joint entropy (8) in a
Bayesian framework.
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Theorem 3. The Bayes estimator of the joint entropy (8) is

ĤB
U(1),...,U(k) = k

[
1 + Eπ|x (log σ)

]
+

k

∑
i=1

∞

∑
j=1

1
j(j + 1)i , (10)

where Eπ|x (·) is the posterior expectation.

Proof. In the Bayesian view, the entropy estimator based on XU(1), . . . , XU(k) is defined as

ĤB
U(1),...,U(k) =

∫
µ

∫
σ

HU(i),...,U(k)π(µ, σ|x)dµdσ. (11)

Then, the estimator (11) is given by

ĤB
U(1),...,U(k) = k + k

∫
µ

∫
σ

log σπ(µ, σ|x)dµdσ +
k

∑
i=1

∞

∑
j=1

1
j(j + 1)i .

The term in (10), Eπ|x (log σ), is approximated as

Eπ|x (log σ) ≈ 1
N −M

N

∑
i=M+1

log σi,

where M is the number of burn-in samples. It completes the proof.

The following section examines the validity of the provided objective Bayesian method by
analyzing a real data set.

3. Application

Asgharzadeh et al. [9] analyzed the upper record values 2.70, 3.78, 4.83, 8.02, 8.37 from the total
annual rainfall (in inches) during March recorded at Los Angeles Civic Center from 1973 to 2006. The
MCMC samples are generated by using the MCMC algorithm described in Subsection 2.1. To obtain
the optimal acceptance rate (see Robert and Rosenthal [7]) under the provided priors (3) and (4), the
variances in a truncated normal proposal are assigned to 0.7 and 0.8, respectively. Based on 5,500
MCMC samples with 500 brun-in samples, the Bayes estimates under the square error loss function
and corresponding 95% HPD CrIs are computed to compare the MLEs. The results are reported
in Table 3. To check the validity of the MCMC samples, we present their autocorrelation functions
(ACFs) and trace plots.

Table 3. Estimates and the corresponding 95% HPD CrI for µ and σ.

µ σ
µ̂ µ̂JB µ̂RB σ̂ σ̂JB σ̂RB

Estimate 2.929 3.196 3.209 0.998 1.010 1.096
HPD CrI (2.694, 3.904) (2.392, 4.122) (0.386, 1.635) (0.403, 1.935)

Acceptance Rate 0.438 0.439
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Figure 2. ACFs (left) and trace plots (right) of the MCMC samples µi under the priors πJ(µ, σ) (top)
and πR(µ, σ) (bottom).
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Figure 3. ACFs (left) and trace plots (right) of the MCMC samples σi under the priors πJ(µ, σ) (top)
and πR(µ, σ) (bottom).
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From Figures 2 and 3, we can see that the MCMC samples are mixing and converge to the
stationary distribution well. Further, we assess the quality of the Bayesian models under the provided
priors (3) and (4) based on the replications Xrep

U(i)(i = 1, . . . , 5) of the observed upper record values
from the posterior predictive distributions given by

f J
Xrep(xrep|x) =

∫
µ

∫
σ

fXrep(xrep|µ, σ)πJ(µ, σ|x)dµdσ (12)

and

f R
Xrep(xrep|x) =

∫
µ

∫
σ

fXrep(xrep|µ, σ)πR(µ, σ|x)dµdσ, (13)

where fXrep(xrep) is the marginal density function of Xrep. The replications are obtained as

Xrep
U(i) =

1
N −M

N

∑
j=M+1

Xrep(j)
U(i) , i = 1, · · · , k,

where Xrep(j)
U(i) is a sample from the marginal density function f ·Xrep(xrep). The replications and their

mean and standard deviation (std) are given in Table 4. The mean and standard deviation (std) of the
observed upper record values are 5.54 and 2.541, respectively.

Table 4. Replications, and their Mean and standard deviation (std).

Xrep
U(1) Xrep

U(2) Xrep
U(3) Xrep

U(4) Xrep
U(5) Mean Std

πJB 3.195 4.846 6.046 7.176 8.204 5.894 2.064
πRB 3.221 5.000 6.288 7.506 8.629 6.129 2.226

The model under the Jeffreys prior (3) shows better performance for the replications
Xrep

U(i)(i = 1, 2, 3, 5) and mean, while that under the reference prior (4) shows better performance for

the replication Xrep
U(4) and std. However, there is no significant difference between the replications

under the priors (3) and (4). That is, we can not conclude which model is better for this observed
upper record values. Therefore, we show the estimation results of the joint entropy (10) under both
priors (3) and (4) in Table 5. Further, we present kernel densities of the joint entropies based on the
MCMC samples to show the joint entropies graphically.

Table 5. Estimates and the corresponding 95% HPD CrI of the joint entropy ĤB
U(i),...,U(k)

Ĥ JB
U(1),...,U(k) ĤRB

U(1),...,U(k)

Estimate 6.431 6.803
HPD CrI (2.648, 9.417) (3.455, 10.557)
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Figure 4. Kernel densities of joint entropy based on the MCMC samples under the priors πJ(µ, σ)

(left) and πR(µ, σ) (right).

4. Conclusions

This paper proposed an entropy inference method based on an objective Bayesian approach
for upper record values having the two-parameter logistic distribution. First, we provided the
noninformative priors such as the Jeffreys and reference priors for unknown parameters of the
two-parameter logistic distribution, and then derived the entropy based on i-th upper record value
and the joint entropy based on the upper record values, and examined their properties. We evaluated
the objective Bayesian models under the provided objective priors through the posterior predictive
checking that is conducted based on the replications of the observed upper record values. The
proposed objective Bayesian approach is usefull when there is not enough prior information, and
saves a lot of effort and time to obtain prior information.
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