Interstitial Cystitis-Associated Urinary Metabolites Identified by Mass-Spectrometry Based Metabolomics Analysis

Jay Kim, PhD
Cedars-Sinai Medical Center
UCLA

Confidential information included
Urinary Metabolite Profiling Combined with Computational Analysis Suggest Interstitial Cystitis-Associated Candidate Biomarkers
Interstitial Cystitis

- A chronic syndrome of unknown etiology
- Very common bladder disease among old generation (more than one out of 77 people in USA)
- Affects quality of life, productivity and work performance—Public health burden
- Elmiron, the first FDA-approved oral drug for IC, shows unfavorable side effects
- Need for new medication for IC
- Need for objective and clinically relevant indicators
IC-Associated Mechanistic Signaling Network 1:
The Frizzled 8-Associated Antiproliferative Factor Enhances p53 Stability
Through USP2a and MDM2

p53 mediates interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human urothelial cells

Jayoung Kima,b, Susan K. Keayc, Jordan D. Dimitrakova,b, Michael R. Freemana,b,*

a The Urological Diseases Research Center, Children's Hospital Boston, Boston, MA 02115, USA
b Departments of Surgery, Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
c Division of Infectious Diseases, Department of Medicine, The University of Maryland School of Medicine and V A Medical Center, Baltimore, MD 21201, USA

Received 6 February 2007; accepted 21 June 2007

Heparin-binding epidermal growth factor–like growth factor functionally antagonizes interstitial cystitis antiproliferative factor via mitogen–activated protein kinase pathway activation

Jayoung Kim*, Susan K. Keayc and Michael R. Freemanc

*The Urological Diseases Research Center, Children’s Hospital Boston, cDepartments of Surgery and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, and dDivision of Infectious Diseases, Department of Medicine, The University of Maryland School of Medicine and VA Medical Center, Baltimore, MD, USA

Accepted for publication 10 July 2008

A Synthetic Form of Frizzled 8-Associated Antiproliferative Factor Enhances p53 Stability through USP2a and MDM2

Jayoung Kim1,2,3,*, Susan K. Keay4, Sungyong You1, Massimo Loda5,6,7,*, Michael R. Freeman1,2,3

1Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 2The Urological Diseases Research Center, Children’s Hospital Boston, Boston, Massachusetts, United States of America, 3Departments of Surgery and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 4Division of Urology, Department of Medicine, the University of Maryland School of Medicine and VA Maryland Health Care Center, Baltimore, Maryland, United States of America, 5Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts, United States of America, 6Centre for Molecular Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America, 7Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
Quantitative Proteomics Identifies a β-Catenin Network as an Element of the Signaling Response to Frizzled-8 Protein-Related Antiproliferative Factor

IC-E Associated Mechanistic Signaling Network 2:
IC-Associated Mechanistic Signaling Network 3:
Integration Analysis of Quantitative Proteomics and Transcriptomics Data Identifies Potential Targets of Frizzled-8 Protein-related Antiproliferative Factor In Vivo

Gamper method

Our method

5050 probe sets
Up:2636
Down:2414

Our method:FDR<0.01, Fold>1.40

Gamper’s method:FDR<0.01, Fold>2.00

Non-ulcer tissue
Healthy

Inflammation pathways
1. TCR signaling pathway;
2. BCR signaling pathway;
3. FcεRI signaling pathway;
4. TLR signaling pathway;
5. Antigen processing and presentation;
6. Leukocyte transendothelial migration.
'OMICS’ Approaches to Understand Intersitital Cystitis

More 'OMICS’ Profiles using the Cutting-Edge Technology are needed

Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo

Wei Yang¹,²,³, Yongsoo Kim⁴, Taek-Kyun Kim⁵, Susan K. Keay⁶, Kwang Pyo Kim⁶, Hanno Steen³,⁷, Michael R. Freeman¹,²,⁶,⁸, Dahee Hwang⁴ and Jayoung Kim¹,²,⁸

Review Article
Int Neurourol J 2012;16:159-168
http://dx.doi.org/10.5213/inj.2012.16.4.159
pISSN 2093-4777 - eISSN 2093-6931

‘Omics’ Approaches to Understanding Interstitial Cystitis/Painful Bladder Syndrome/Bladder Pain Syndrome

Sungyong You¹, Wei Yang¹, Jennifer T. Anger², Michael R. Freeman¹,³,⁴, Jayoung Kim¹,³,⁴

¹Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA;
²Department of Surgery, Cedars-Sinai Medical Center, Center for Women's Continence and Pelvic Health at Cedars-Sinai, Los Angeles, CA;
³The Urological Diseases Research Center, Boston Children's Hospital, Boston, MA;
⁴Departments of Surgery and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
Differentiation of IC patients and healthy control groups using multivariate analysis
A volcano plot showing differentially expressed metabolites in IC patients.
Network modeling derived from IC-associated metabolites
Differential network in IC is identified with multilevel local graphical model.
Acknowledgements

- NIDDK/NIH 1R01DK100974
- NIDDK/NIH 1U01 DK103260
- Department of Defense (W81XWH-15-1-0415)
- Centers for Disease Controls and Prevention (1U01DP006079)
- Steven Spielberg Discovery Fund Research Career Development Award
- U24 DK097154
- UCLA CTSI UL1TR000124
- Interstitial Cystitis Association (ICA) grant
- Fishbein Family IC Research Foundation
- New York Academy of Medicine
- Children’s Hospital Boston Faculty Development
- J.K. is an IMAGINE NO IC Scholar, American Urological Association Foundation Research Scholar and an Eleanor and Miles Shore Scholar of Harvard Medical School.