

2nd International Electronic Conference on Medicinal Chemistry

1-30 November 2016 chaired by Dr. Jean Jacques Vanden Eynde

Synthesis of bioactive 2-(arylamino)thiazolo[5,4-f] quinazolin-9-ones via Hügershoff reaction or Cu catalyzed intramolecular C-S bond formation

Damien Hédou¹, Carole Dubouilh¹, Nadège Loaëc^{2,3}, Laurent Meijer³, Corinne Fruit¹ and Thierry Besson^{1,*}

¹ Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France;

² Protein Phosphorylation & Human Disease group, Station Biologique, 29680 Roscoff, France

³ Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France

* Corresponding author: thierry.besson@univ-Rouen.fr

Synthesis of bioactive 2-(arylamino)thiazolo[5,4-f] quinazolin-9-ones via Hügershoff reaction or Cu catalyzed intramolecular C-S bond formation.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

Abstract: A library of thirty eight novel thiazolo[5,4-*f*]quinazolin-9(8*H*)-one derivatives (series **8**, **10**, **14** and **17**) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3*H*)-one (**3**) has been reinvestigated and performed on a multi-gram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer's disease and showed that some molecules of the **17** series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

Keywords: Hügershoff reaction; thiazolo[5,4-f]quinazolin-9(8H)-ones; microwave-assisted synthesis; protein kinases

Introduction

Our research group is mainly invested in the synthesis of C,N,S-containing bioactive molecules able to modulate the activity of deregulated kinases (CDK5, GSK-3, CLK1, CK1 and the dual-specificity kinase DYRK1A) involved to some extent in Alzheimer's disease (AD). Among them some thiazolo[5,4-*f*]quinazolin-9(8*H*)-ones (Figure 1) have been revealed of particular interest in the design of multi-target-directed ligands (MTDLs), a new strategy for the development of new tools against neurodegenerative diseases.

The target molecules were thiazolo[5,4-*f*]quinazolin-9-ones substituted in position N-8 by a cyclopropyl chain (Figure 1).

Figure 1. General formula of lead kinases inhibitors previously described [1-5] and new molecules targeted.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion : *Envisioned retrosynthetic pathway and the key 6-amino-3-cyclopropylquinazolin-4(3H)-one* (**3**).

The first planned strategy uses the Hügershoff reaction, a bromine-mediated cyclization process involving electrophilic addition. The second route imagined concerns a metal catalyzed intramolecular C-S bond formation on the synthesis of variously 2-substituted benzothiazoles from thiobenzanilides (Scheme 1).

Scheme 1. Envisioned retrosynthetic pathway for the synthesis of the target products, *via* Hügershoff reaction or transition metal-catalyzed intramolecular C-S bond formation.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion: *Synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)- one* (**3**).

The key 6-amino-3-cyclopropylquinazolin-4(3*H*)-one (**3**) was obtained via an efficient microwave-assisted MCR procedure.

Scheme 2. Sequential MCR procedure for convenient synthesis of 6-amino-3-cyclopropylquinazolin-4(3*H*)-one (**3**) from **1**. *Reagents and conditions:* (*a*) Step 1: DMFDMA (2.5 equiv), DMF, 100 °C (μ w), 15 min; Step 2: Cyclopropylamine (1.1 eq), AcOH, 100 °C (μ w), 15 min; 85%; (*b*) HCO₂NH₄ (5.0 equiv), Pd/C (10%), EtOH, 85 °C (μ w), 15 min; 85%.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion : *Synthesis of 2-aminoarylthiazolo*[5,4-f]quinazolin-9-ones via Hügershoff reaction

Synthetic routes for access to the key isothiocyanate 4.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion : *Synthesis of thiourea* **7a-I** *from amine* **3** *or from isothiocyanate* **4**.

Table 1. Chemical structures and yields obtained for the synthesis of series 7a-1.

-R ª	Compound	Method	Time (h)	Yield ^b (%)
Ph	7a	A/B	1/2	84/80
4-Cl-C ₆ H ₄	7b	А	1	91
4-F-C6H4	7c	В	2	90
4-CF3-C6H4	7 d	Be	1	84
$4-NO_2-C_6H_4$	7e	A	0.5	74
2,4-diCl-C ₆ H ₃	7f	В	1	89
3-Py	7g	Be	2	89
4-Me-C ₆ H ₄	$7\bar{h}$	A	2	89
4-OMe-C ₆ H ₄	7 i	A	2	87
4-NMe ₂ -C ₆ H ₄	7j	В	10 min	87

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion : *Synthesis of 2-aminoarylthiazolo*[5,4-f]quinazolin-9-ones via Hügershoff reaction.

The cyclization was not regioselective. The phenyl group (A) of the starting diaryl thiourea **7a** possessed the most electron-rich *ortho*-carbon, compared to the quinazolin-4-one ring B. Compounds **10** are the major products.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

Results and discussion : *Synthesis of 2-aminoarylthiazolo*[*5,4-f*]*quinazolin-9-ones via Hügershoff reaction.*

8b-g (45-90%)

9b-e (traces, not purified)

Table 2. Chemical structures and yields obtained for the synthesis of series 8a-g via the Hügershoff reaction.

RUX	Compound	Time (h)	Yield * (%)
\bigcirc	8a	0.5	10 b,c
a	8b	1	_ d
F	8c	1	45 ^b
F3C	8d	1	79 ^b
O ₂ N	8e	4	86 ^b
	8f	1.5	90
	8g	4	80

^a Isolated yield. ^b Traces of compounds of the 9 series were detected but not purified

Electron-deficient phenyl substituents are present in A cycle of the thiourea derivatives.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion : *Synthesis of 2-aminoaryl- and 2-aminoalkylthiazolo*[*5,4-f*]*quinazolin-9-ones via Metal Catalyzed C-S Bond Formation.*

Synthesis of thiourea **12** via condensation of aniline with isothiocyanate **13**.

Formation of the isothiocyanate function was performed before bromination of the skeleton

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

Results and discussion : *Synthesis of 2-aminoaryl- and 2-aminoalkylthiazolo*[5,4*f*]*quinazolin-9-ones via Metal Catalyzed C-S Bond Formation*

A sequential one-pot version of the transformation of isothiocyanate **13** into the tricyclic arene **8** series was considered.

This approach required the complete conversion of the starting material **13** into the corresponding thiourea intermediate (in square brackets) before addition of other reagents (CuI and Cs_2CO_3) and microwave-assisted cyclization by heating for 1 h.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

pharmaceuticals

Results and discussion : *Synthesis of 2-aminoaryl- and 2-aminoalkylthiazolo*[5,4-*f*]*quinazolin-9-ones via Metal Catalyzed C-S Bond Formation.*

Depending on the nature of aniline, the conversion time can vary from 30 min (electron-rich compounds *e.g.* 4-OMe, 3,4-diOMe or $4-NMe_2$ anilines) to an overnight stirring (12 h).

Because electron-poor anilines required several hours for completion of the first part of the reaction, the Hügershoff reaction was found to be more efficient in these cases (products **8d–f**).

- R ¹	-R ²	Compound	Time à (h)	Yield ^b (%)
\bigcirc	Н	8a	1	80
F	Н	8c	2	96
Me	Н	8h	1	89
Meo	Н	81	0.5	88
N	Н	S j	0.5	87
Meo	Н	8k	0.5	86
MeO MeO	Н	81	0.5	90
H2NO2S	Н	8m	12	77

 $^{\rm a}$ Time of the conversion of 13 into the corresponding thioureas (step 1); $^{\rm b}$ Isolated yield.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

pharmaceuticals

Results and discussion : *Synthesis of 2-aminoaryl- and 2-aminoalkylthiazolo*[5,4-*f*]*quinazolin-9-ones via Metal Catalyzed C-S Bond Formation.*

	- R ¹	- R ²	Compound	Time ^a (h)	Yield ^b (%)
Microwave-assisted heating at 80 °C for 1 h complete the	\bigcirc	Н	14a	0.5	80
sequence to afford the	N N	Н	14b	0.5	96
(series 14a–f) in very good vields (80%–96%, see Table 5).	\bigcirc N \sim	Н	14c	0.5	89
		Н	14d	0.5	88
alkyl—N S O N N	NH		14 e	0.5	87
N 14 series			14f	0.5	86

* Time of the conversion of 13 into the corresponding thioureas (step 1); ^b Isolated yield.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Results and discussion : *Synthesis of carboximidamides* **17a-f** *from brominated amine* **11***.*

* Time of the conversion of 16 into the corresponding carboximidamides; ^b Isolated yield.

Results and discussion : Kinase inhibitory activity^{a,b,c} of the thiazolo[5,4-*f*]quinazoline series (7a-I, 8a-m, 10a and 10I, 14a-f and 17a-f).

Compounds	CDK5/p25	CK1d/e	CLK1	DYRK1A	GSK-3a/b
7a-l	>10	>10	>10	>10	≥10
8a	>10	>10	3.4	>10	≥10
8c-f	>10	>10	>10	>10	≥10
8g	>10	>10	1.7	>10	≥10
8h-i	>10	>10	>10	>10	≥10
8j	>10	>10	1.3	2.0	7.3
8k-m	>10	>10	>10	>10	≥10
10a	>10	>10	5.2	4.8	≥10
10	>10	>10	>10	>10	≥10
14a	>10	>10	3.4	>10	>10
14b	>10	>10	>10	>10	≥10
14c	>10	>10	>10	>10	≥10
14d	>10	>10	8.1	8.2	≥10
14e	>10	>10	5.3	>10	≥10
14f	>10	>10	>10	>10	≥10
17a	>10	>10	1.0	0.67	0.4
17b	>10	>10	0.29	4.4	1.1
17c	>10	>10	2.3	3.2	2.8
17d	>10	>10	2.1	2.9	3.9
17e	>10	1.9	0.38	0.14	0.23
17f	>10	>10	0.61	0.82	0.49
Harmine	>10	1.5	0.026	0.029	>10

All compounds were first tested at a final concentration of 10 μM. Compounds showing less than 50% inhibition were considered as inactive $(IC_{50} > 10 \mu M)$. Compounds displaying more than 50% inhibition at 10 μ M were next tested over a wide range of concentrations (usually 0.01 to 10 μ M), and IC₅₀ values were determined from the dose-response curves (Sigma-Plot). Harmine is a β -carboline alkaloid known to be a potent inhibitor of DYRK1A. It was also tested as positive control and its IC₅₀ values were compared to those obtained for the compounds under study.

The two most active molecules

^a IC₅₀ values are reported in μ M. The most significant results are presented in bold; ^b Kinases activities were assayed in triplicate. Typically, the standard deviation of single data points was below 10%.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

sponsors:

pharmaceuticals

Results and discussion : The two most active molecules : 17e and 17f

Comparing the results of 2-aminosubstituted derivatives and their carboximidamides analogs, it seems rather obvious that having such molecular scafolds with submicromolar affinities for various kinases is related to the presence **of carboximidamide or carboximidate functions** that result from the substitution of a carbonitrile group itself present in position 2 of the thiazole.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

Conclusion

- A library of 38 novel 8-aminoaryl thiazolo[5,4-f]quinazolin-9(8H)-ones (8, 10, 14 and 17 series) has been prepared, using microwave-assisted technology:
- An efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3*H*)- one (**3**) was developed and optimized to the multigram scale.
- The Hügershoff reaction was re-investigated under microwaves.
- A Cul catalyzed ligand-free intramolecular C-S bond formation was also developed.
- Molecules of the **8**, **10** and **14** series described in this paper are not pertinent for the development of kinases inhibitors.
- The most active compounds are carboximidamides analogues (**17** series) of the target compounds that shown submicromolar IC₅₀ values for CLK1, DYRK1A and GSK-3 α/β over the other tested enzymes.

References :

For more complete information see :

- Logé, C.; Testard, A.; Thiéry, V.; Lozach, O.; Blairvacq, M.; Robert, J.-M.; Meijer, L.; Besson, T. Novel 9-oxo-thiazolo[5,4-f]quinazoline-2-carbonitrile derivatives as dual cyclin-dependent kinase 1 (CDK1)/glycogen synthase kinase-3 (GSK-3) inhibitors: Synthesis, biological evaluation and molecular modeling studies. *Eur. J. Med. Chem.* **2008**, *43*, 1469–1477, doi:10.1016/j.ejmech.2007.09.020.
- Testard, A.; Logé, C.; Léger, B.; Robert, J.-M.; Lozach, O.; Blairvacq, M.; Meijer, L.; Thiéry, V.; Besson, T. Thiazolo[5,4-f]quinazolin-9-ones, inhibitors of glycogen synthase kinase-3. *Bioorg. Med. Chem. Lett.* 2006, 16, 3419–3423, doi:10.1016/j.bmcl.2006.04.006.
- Foucourt, A.; Hédou, D.; Dubouilh-Benard, C.; Désiré, L.; Casagrande, A.-S.; Leblond, B.; Loaëc, N.; Meijer, L.; Besson, T. Design and synthesis of thiazolo[5,4-*f*]quinazolines as DYRK1A inhibitors, Part I. *Molecules* 2014, 19, 15546–15571, doi:10.3390/molecules191015546.
- 4. Foucourt, A.; Hédou, D.; Dubouilh-Benard, C.; Désiré, L.; Casagrande, A.-S.; Leblond, B.; Loaëc, N.; Meijer, L.; Besson, T. Design and synthesis of thiazolo[5,4-*f*]quinazolines as DYRK1A inhibitors, Part II. *Molecules* 2014, 19, 15411–15439, doi:10.3390/molecules191015411.
- 5. Hédou, D.; Godeau, J.; Loaëc, N.; Meijer, L.; Fruit, C.; Besson, T. Synthesis of Thiazolo[5,4f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. *Molecules* **2016**, *21*, 578, doi:10.3390/molecules21050578.

Acknowledgments

Financial support from the MESR (French Ministère de l'Enseignement Supérieur & de la Recherche) is gratefully acknowledged for the doctoral fellowships to D.H.. We thank the LABEX SynOrg (ANR-11-LABX-0029) for financial support. We also acknowledge Milestone S.r.l. (Italy) for provision of multi-mode microwave reactor (Start S[™]) and for technical support. This research was partly supported by grants from the 'Fonds Unique Interministériel" (FUI) TRIAD (LM) projects, the "Fondation Jérôme Lejeune" (LM), and an FP7-KBBE-2012 grant (BlueGenics) to LM.

2nd International Electronic Conference on Medicinal Chemistry 1-30 November 2016

