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ABSTRACT 

 

Dibenzoylhydrazine derivatives are used as insect growth regulators that act through the 

induction of a lethal larval molting process in insects that belong to the species of Lepidoptera 

and Coleoptera. This paper presents linear regression models of ecdysone agonistic activity of 

dibenzoylhydrazine insecticides measured in the silkworm Bombyx Mori lepidopteran species 

cell lines. These structures were modeled through the PM7 semiempirical quantum chemical 

method using the MOPAC 2016 software. Several structural descriptors were derived from 

the energy optimized structures and were related to the insecticidal activity, expressed as 

pEC50 values, using the multiple linear regression (MLR) and the partial least squares (PLS) 

methods. The dataset was divided into training and test (30% of the total number of 

compounds, chosen randomly) sets to test the model predictive power by several parameters. 

According to the squared correlation coefficients values, of 0.827 and 0.78 for the MLR and 

PLS models, respectively, and other statistical tests, the MLR model had better fitting results 

and good predictive ability compared to the PLS one. Structural features which influence the 

ecdysone agonistic activity of dibenzoylhydrazine insecticides encode chemical information 

on molecular flexibility, are related to sigma and pi bonding patterns in molecules and to 

geometrical descriptors invariant to translation and rotation, which contain electronic and 

topological information. 
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INTRODUCTION 

Dibenzoylhydrazine compounds are insect growth regulators that act through the induction of 

an early and lethal larval molting process in vulnerable insects that belong to the species of 

Lepidoptera and Coleoptera [1]. These compounds activate the steroid receptor complex of 

ecdysone type at lower concentrations than the natural hormone. The insect cannot remove 

them efficiently from its body and as consequence a constant state of ecdysteroid signaling is 

displayed in the insect, which avoids it to complete the molting process. Because the insect 

stays permanently trapped in the molting process and is unable to feed, it dies in the period of 

a few days from desiccation and starvation. 

The activity of ecdysteroids is mediated by a heterodimer protein complex composed 

of ecdysone receptor and ultraspiracle, which activates the translation of the associated genes 

after the trigger caused by the binding of the corresponding ligand molecule [2]. 

The molecular mechanism of action of ecdysteroids is still unknown because one of 

the three interaction sites of the hormone-receptor model is not present in some active 

compounds [3]. 

The objective of our study is to estimate the ecdysone agonistic activity of 

dibenzoylhydrazine insecticides [4] measured in the silkworm Bombyx Mori lepidopteran 

species cell lines by linear regression techniques (multiple linear regression (MLR) and the 

partial least quares (PLS) methods).  

 

Table 1. The smiles notation of dibenzoylhydrazine structures and their experimental 

insecticidal (pEC50) and predicted (pEC50 pred) activity values obtained using the MLR/PLS 

methods  
No Smiles pEC50 pEC50pred_MLR pEC50pred_PLS 

1 CC(C)(C)N(NC(=O)C1=CC=CC=C1)C(=O)C1=CC=CC=C1 6.36 6.95 6.87 

2 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=CC(C)=CC(C)=C1)C(C)(C)C 8.95 7.55 7.88 

3* COC1=CC=CC(C(=O)NN(C(=O)C2=CC(C)=CC(C)=C2)C(C)(C)C)=C1C 8.47 7.73 7.72 

4* CC(C)(C)N(NC(=O)C1=CC=C(Cl)C=C1)C(=O)C1=CC=CC=C1 7.11 7.47 7.29 

5 CC1=CC(=CC(C)=C1)C(=O)N(NC(=O)C1=C(C)C2=C(OCCC2)C=C1)C(C)(C)C 9 8.99 8.69 

6 CC(C)(C)N(NC(=O)C1=CC=CC=C1)C(=O)C1=C(C=CC=C1)C(F)(F)F 6.06 6.31 6.28 

7 CC(C)(C)N(NC(=O)C1=CC=CC=C1)C(=O)C1=C(Cl)C(Cl)=C(Cl)C=C1 5.44 6.18 6.17 

8 CC(C)(C)N(NC(=O)C1=CC=CC=C1)C(=O)C1=C(Cl)C(Cl)=C(Cl)C=C1 6.7 6.63 7.42 

9* CC(C)(C)N(NC(=O)C1=C(F)C=CC=C1)C(=O)C1=C(Cl)C=CC=C1 6.84 6.15 5.40 

10* CC1=C(C=CC=C1)C(=O)NN(C(=O)C1=C(Cl)C=CC=C1)C(C)(C)C 6.89 6.71 5.94 

11* CC(C)(C)N(NC(=O)C1=CC(F)=CC=C1)C(=O)C1=C(Cl)C=CC=C1 6.49 6.10 5.68 

12 CC(C)(C)N(NC(=O)C1=CC(Cl)=CC=C1)C(=O)C1=C(Cl)C=CC=C1 6.51 6.31 6.66 
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13 CC(C)(C)N(NC(=O)C1=CC=C(Br)C=C1)C(=O)C1=C(Cl)C=CC=C1 6.82 6.30 6.38 

14 CCCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C=CC=C1)C(C)(C)C 7.51 7.07 6.69 

15 CC(C)C1=CC=C(C(NN(C(C)(C)C)C(C2=C(Cl)C=CC=C2)=O)=O)C=C1 8.18 7.29 6.93 

16* COC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C=CC=C1)C(C)(C)C 6.87 6.95 6.33 

17 CC(C)(C)N(NC(=O)C1=CC=CC=C1)C(=O)C1=CC=CC=C1 8.15 7.79 8.75 

18* CC1=CC(=CC(C)=C1)C(=O)N(NC(=O)C1=CC=C(C=C1)C(C)(C)C)C(C)(C)C 7.96 7.65 7.22 

19 CC1=CC(=CC(C)=C1)C(=O)N(NC(=O)C1=C(C)C(C)=CC=C1)C(C)(C)C 7.76 8.29 7.48 

20 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=CC=CC=C1)C(C)(C)C 4.72 4.90 4.95 

21 CCOC1=C(C=CC=C1)C(=O)N(NC(=O)C1=CC=C(OC)C=C1)C(C)(C)C 5.11 5.02 4.75 

22 CCOC1=C(C=CC=C1)C(=O)N(NC(=O)C1=CC=C(Cl)C=C1)C(C)(C)C 5.54 5.07 5.31 

23 CCOC1=C(C=CC=C1)C(=O)N(NC(=O)C1=CC=C(CC)C=C1)C(C)(C)C 5.93 6.19 5.87 

24 CC1=CC(C(=O)N(NC(=O)C2=CC=CC=C2)C(C)(C)C)=C(Cl)C(C)=C1 6.94 6.55 6.36 

25 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C(C)=CC(C)=C1)C(C)(C)C 5.94 6.17 6.69 

26 CCCCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C(C)=CC(C)=C1)C(C)(C)C 5.91 6.30 5.91 

27 COC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C(C)=CC(C)=C1)C(C)(C)C 6.52 6.43 6.23 

28* CC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C(C)=CC(C)=C1)C(C)(C)C 5.75 6.15 7.02 

29* CCCCCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C(C)=CC(C)=C1)C(C)(C)C 6.35 6.31 6.22 

30 CC1=CC(C(=O)N(NC(=O)C2=CC=C(Cl)C=C2)C(C)(C)C)=C(Cl)C(C)=C1 7.48 8.21 8.09 

31 CC1=CC(C(=O)N(NC(=O)C2=CC=C3OCCCC3=C2C)C(C)(C)C)=C(Cl)C(C)=C1 8.54 8.86 8.41 

32 CC1=C2CCCOC2=CC=C1C(=O)NN(C(=O)C1=C(Cl)C=CC=C1)C(C)(C)C 6.37 6.69 6.93 

33 CCCCCC1=CC=C(C=C1)C(=O)NN(C(=O)C1=C(Cl)C=CC=C1)C(C)(C)C 4.79 5.16 5.51 

* test compounds 

METHODS 

 

Definition of target property and molecular structures 

A set of 33 dibenzoylhydrazine ecdysone agonists with known biological activity was 

analyzed in this study. The ecdysone agonistic activity data [4], expressed as pEC50 values 

(where EC50 represents the concentration at which 50% of the maximum response is 

achieved) was used as dependent variable.  

In the first step, the structures of the investigated molecules were pre-optimized using 

the (MMFF94) molecular mechanics force field included in the MarvinSketch (MarvinSketch 

15.2.16.0, ChemAxon Ltd. http://chemaxon.com) package. In the next step, the minimized 

structures were refined using the semiempirical PM7 Hamiltonian [5] implemented in 

MOPAC 2016 program (MOPAC2016, James J. P. Stewart, Stewart Computational 

Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016).). For the 

geometry optimization a gradient norm limit of 0.01kcal/Å was set. For the conformations of 

minimum energy several quantum chemical descriptors were calculated: electronegativity, 
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hardness, chemical potential, electrophilicity, HOMO and LUMO molecular orbital energies, 

heat of formation, dipole moment, molecular surface area, softness.  

Structural 0D, 1D, 2D and 3D molecular descriptors were calculated for the lowest 

energy structures using the DRAGON (Dragon Professional 5.5, 2007, Talete S.R.L., Milano, 

Italy) software. 

 

 The Multiple Linear Regression (MLR) method  

Because the number of 1412 of computed descriptors is too high compared to the number of 

compounds (N = 33), a proper variable selection method was mandatory. The Genetic 

Algorithm (GA) is a trustworthy and extensively used variable selection method [6]. GA uses 

a stochastic algorithm that elucidates the optimization issues illustrated by fitness criteria, 

implying the evolution assumption of Darwin and various genetic functions, including 

crossover and mutation. The QSARINS v. 2.1 program [7] uses GAs to choose the 

meaningful descriptors that influence the variation of biologic activity of the compounds. The 

following parameters were employed: the RQK fitness function [8] with leave-one-out cross-

validation [9] correlation coefficient as constrained function to be optimized, a 

crossover/mutation trade-off parameter of T = 0.5 and a model population size of P = 50.  

 

The Partial Least Squares (PLS) method  

Projections to latent structures (PLS) represent a regression technique for modeling the 

relationship between projections of dependent factors and independent responses. In this 

approach a block (or a column) of response variables is linked to a block of explanatory 

variables [10]. The relationship between the dependent and independent variables is described 

as a latent variable approach [11]. In the PLS approach stable, correct and highly predictive 

models are obtained even for correlated descriptors [12]. In this work PLS calculations were 

performed using the SIMCA (SIMCA P+12.0.0.0, May 20 2008, Umetrics, Sweeden, 

http://www.umetrics.com/) package. The QSAR matrix (of dependent and independent 

variables) was analyzed in a first step by the principal component analysis (PCA) [10], and 

subsequently by the partial least squares (PLS) approach. The squared correlation regression 

coefficient r2, and the squared cross-validated correlation coefficient, q2, are the most eloquent 

statistical parameters that ensure a measure of the quality and validity of the final PLS model, 

while the Variables Importance in the Projection (VIP) values and the sign of the variables’ 

coefficients are more relevant in explaining the activity mechanism. The significant principal 

components were selected by 7 cross-validation groups. 
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Model validity 

The dibenzoylhydrazine derivatives were divided into training and test sets by random split, 

taking out 27% of the total number of compounds (no. 3, 4, 9, 10, 11, 16, 18, 28, 29), while 

the remaining 73% were used as training set. The model’s predictability was tested using the 
2

1FQ [13]; 2
2FQ [14]; 2

3FQ  [15] and the concordance correlation coefficient (CCC) [16] (having 

the thresholds values higher than 0.85, as they have been rigorously determined by a 

simulation study [17])-external validation parameters. 

The predictive power of the QSAR models was, also, evaluated based on the 

predictive parameter 2
mr  (with a lowest threshold value of 0.5 to be accepted) [18].  

The Y-randomization test is a usually used technique that exhibits  the robustness of a 

QSAR model, being a measure of model overfit. The dependent variable (biological activity) 

is arbitrarily mixed and a QSAR model is built using the same X matrix of molecular 

descriptors. The obtained MLR and PLS models (after 999 randomizations) must have 

minimal r2 and q2 values [19].  

The data over fitting and model applicability was controlled by comparing the root-

mean-square errors (RMSE) and the mean absolute error (MAE) of the training and validation 

sets [20]. 

For internal validation results several measures of robustness were employed: Y-

scrambling [21], adjusted correlation coefficient ( 2
adjr ) and q2 (leave-one-out, 2

LOOq , and leave-

more-out, 2
LMOq ) cross-validation coefficient.  

 

Results and discussion 

MLR analysis  

The data was normalized using the autoscaling method:  

m

mmj
mj S

XX
XT

−
=        (1) 

where for each variable m, XTmj and Xmj are the j values for the m variable after and before 

scaling, respectively, mX is the mean, and Sm is the standard deviation of the variable. 

Several MLR models were built after variable selection, which was carried out by 

genetic algorithm. The fitting and predictivity criteria for these models are presented in Table 

2-4. 
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Table 2 Fitting and cross-validation parameters of the MLR models (training set)* 
 

Model 2
trainingr  2

LOOq  2
LMOq  2

adjr  RMSEtr MAEtr CCCtr 2
scrr  2

scrq  SEE F 

MLR1 0.827 0.760 0.736 0.801 0.509 0.411 0.906 0.130 -0.266 0.558 31.924 

MLR2 0.785 0.687 0.652 0.753 0.568 0.441 0.880 0.129 -0.267 0.622 24.320 

MLR3 0.799 0.714 0.688 0.768 0.550 0.460 0.888 0.131 -0.259 0.602 26.433 

MLR4 0.808 0.736 0.712 0.779 0.537 0.403 0.894 0.132 -0.258 0.588 28.001 

MLR5 0.774 0.682 0.640 0.740 0.582 0.429 0.873 0.131 -0.266 0.638 22.862 

PLS-M2 0.780 - 0.717 - 0.575 0.485 0.876 0.204 -0.289 - - 

* 2
trainingr -correlation coefficient; 2

LOOq - leave-one-out correlation coefficient; 2
LMOq  leave-more-out correlation 

coefficient; 2
adjr -adjusted correlation coefficient; RMSEtr-root-mean-square errors; MAEtr-mean absolute error; 

CCCtr-the concordance correlation coefficient; 2
scrr  and 2

scrq -Y-scrambling parameters; SEE-standard error of 

estimates; F-Fischer test. 

 

Table 3 Predictivity criteria calculated for the MLR models (test set)* 
 

Model 2
1FQ  2

2FQ  2
3FQ  RMSEext MAEext CCCext 

MLR1 0.734 0.705 0.883 0.420 0.352 0.829 

MLR2 0.733 0.705 0.882 0.420 0.343 0.834 

MLR3 0.612 0.571 0.829 0.507 0.407 0.730 

MLR4 0.540 0.491 0.797 0.552 0.465 0.744 

MLR5 0.627 0.588 0.836 0.497 0.417 0.741 

PLS-M2 -0.121 -0.240 0.732 0.862 0.755 0.455 

* 2
1FQ ; 2

2FQ ; 2
3FQ -external validation parameters; RMSEext-root-mean-square errors; MAEext -mean absolute 

error; CCCext-the concordance correlation coefficient 
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Table 4 Other predictivity parameters ( 2
mr ) and final descriptors selected in the MLR/PLS 

models* 
 

Model 2
mr  Descriptors included in the model* 

MLR1 0.734 RBF, EEig11r, L3s 

MLR2 0.677 RBF, BEHv8, L3s 

MLR3 0.569 RBF, Mor02p, L3s 

MLR4 0.518 RBF, BEHe5, L3s 

MLR5 0.594 X1A, BEHv8, L3s 

PLS-M2 0.136 BEHp2, BELe1, BELm1, BELp1, BELv1, EEig04r, EEig04x, F02[C-C], F03[C-C], F09[C-C], 

HATS4e, HATS4u, Mor02m, Mor02p, Mor02v, Mor11e, Mor11m, Mor11p, Mor11u, Mor11v, 

Mor24m, Mor24p, Mor24v, RDF025m, RDF025v, SPH, VEA2 

* RBF – rotatable bond fraction; EEig11r – Eigenvalue 11 from edge adj. matrix weighted by resonance 

integrals; L3s - 3rd component size directional WHIM index / weighted by atomic electrotopological states; 

BEHv8 - highest eigenvalue n. 8 of Burden matrix / weighted by atomic van der Waals volumes; Mor02p - 3D-

MoRSE - signal 02 / weighted by atomic polarizabilities; BEHe5 - highest eigenvalue n. 5 of Burden matrix / 

weighted by atomic Sanderson electronegativities; X1A - average connectivity index chi-1; BEHp2- highest 

eigenvalue n. 2 of Burden matrix / weighted by atomic polarizabilities; BELe1- lowest eigenvalue n. 1 of Burden 

matrix / weighted by atomic Sanderson electronegativities; BELm1-; BELp1- lowest eigenvalue n. 1 of Burden 

matrix / weighted by atomic masses; BELv1- lowest eigenvalue n. 1 of Burden matrix / weighted by atomic van 

der Waals volumes; EEig04r- Eigenvalue 04 from edge adj. matrix weighted by resonance integrals; EEig04x- 

Eigenvalue 04from edge adj. matrix weighted by edge degrees; F02[C-C]- frequency of C-C at topological 

distance 2; F03[C-C]- frequency of C-C at topological distance 3; F09[C-C]- frequency of C-C at topological 

distance 9; HATS4e- leverage-weighted autocorrelation of lag 4 / weighted by atomic Sanderson 

electronegativities; HATS4u- leverage-weighted autocorrelation of lag 4 / unweighted; Mor02m- 3D-MoRSE - 

signal 02 / weighted by atomic masses; Mor02v- 3D-MoRSE - signal 02 / weighted by atomic van der Waals 

volumes; Mor11e- 3D-MoRSE - signal 11 / weighted by atomic Sanderson electronegativities; Mor11m- 3D-

MoRSE - signal 11 / weighted by atomic masses; Mor11p- 3D-MoRSE - signal 11 / weighted by atomic 

polarizabilities; Mor11u- 3D-MoRSE - signal 11 / unweighted; Mor11v- 3D-MoRSE - signal 11 / weighted by 

atomic van der Waals volumes; Mor24m- 3D-MoRSE - signal 24 / weighted by atomic masses; Mor24p- 3D-

MoRSE - signal 24 / weighted by atomic polarizabilities; Mor24v- 3D-MoRSE - signal 24 / weighted by atomic 

van der Waals volumes; RDF025m- Radial Distribution Function - 2.5 / weighted by atomic masses; RDF025v- 

Radial Distribution Function - 2.5 / weighted by atomic van der Waals volumes; SPH- spherosity; VEA2- 

average eigenvector coefficient sum from adjacency matrix. 

 

 In order to verify the reliability of the developed equations, experimental versus 

predicted pEC50 values, Williams plots and Y-scramble plots for the MLR1 best model are 

presented in Figure 1, 2 and 3, respectively. 
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Figure. 1. Experimental versus predicted pEC50 values for the MLR1 model predicted by the 

model (left) and by the leave-one-out (right) crosvalidation approach (yellow circles-training 

compounds, blue circles-test compounds). 

 

 The Williams plot is used to identify compounds with the greatest structural influence 

(hi > h*; hi =leverage of a given chemical; h*= the warning leverage) in the QSAR model.  

The Williams plot for the training sets presented in Figure 2 (for the MLR1 model), 

establishes the applicability domain of the models within ±2.5σ and a leverage threshold h* of 

0.500. The analysis of Figure 2 suggests that all the compounds in the dataset are within the 

applicability domain of the models. 

The y-scrambling test indicates the robustness of a QSAR model, being a measure of 

the model overfit. The robustness of the developed models is confirmed by a significant low 

scrambled r2 ( 2
scrr ) and cross-validated q2 ( 2

scrq ) values obtained for 999 trials. Figure 3 

suggest that in case of all the randomized models, the values of 2
scrr  and 2

scrq  were < 0.5 

( 2
scrr / 2

scrq of 0.130/-0.266). The low calculated 2
scrr  and 2

scrq values indicate no chance 

correlation for the chosen models. 
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Figure. 2. Williams plot predicted by the final MLR1 model (yellow circles-training 

compounds, blue circles-test compounds). 

 

 
Figure. 3. Y-scramble plots for the MLR1 model. 

 

In the present study, the best MLR1 model has three parameters. A higher or lower 

number of molecular descriptors does not have any significant effect on the model’s accuracy. 

Additionally, the predictive r2 (leave-one-out, 2
LOOq , and leave-more-out, 2

LMOq , cross-
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validation parameters) were calculated and presented in Table 2. The most important 

descriptors, selected by genetic algorithm, which influence the ecdysone agonistic activity 

are: the constitutional RBF descriptor (which describes the rotatable bond fraction), the 

EEig11r (Eigenvalue 11 from edge adj. matrix weighted by resonance integrals) edge 

adjacency index, the L3s (3rd component size directional WHIM index / weighted by atomic 

electrotopological states) WHIM descriptors.  

Increase of the EEig11r values yield increased the insecticide activity. Higher values 

of the RBF and L3s descriptors diminish the insecticide ability of the compounds. 

An intercorrelation analysis of the selected molecular descriptors from the MLR1 

model is presented in Table 5. The three selected descriptors are not intercorrelated. 

 

Table 5. Correlation matrix of the selected descriptors included in the MLR1 model 

 RBF EEig11r L3s 

RBF 1.0000   

EEig11r 0.3144 1.0000  

L3s 0.2600 0.3715 1.0000 

 

The statistical results and intercorrelation coefficients presented above confirm 

that the MLR method associated with a proper variable selection procedure generates an 

efficient QSAR model for predicting the ecdysone agonistic activity of dibenzoylhydrazine 

insecticides.  

 

PLS analysis 

A PCA model was built using the SIMCA-P+ version 12.0 software for the entire X matrix 

which include N=33 compounds and X = 1412 molecular descriptors. From the total of 7 

significant principal components resulted from this analysis, we observed that the first three 

components already explained 65.5% of the information content of the descriptor matrix. PLS 

calculations were, as well, performed using the same training and test sets, as in case of MLR 

models. The statistical results of the PLS model: 2
)CUM(XR = 0.47, 2

)CUM(YR = 0.806 and 

2
)CUM(Q = 0.619 obtained for two principal components demonstrated the model overfit 

( 2
)CUM(XR  and 2

)CUM(YR  are the cumulative sum of squares of all the X and Y values, 

respectively, explained by all extracted principal components; 2
)CUM(Q  is the fraction of the 
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total variation of the Y values that can be predicted for all the A extracted principal 

components in the cross-validation procedure (7 rounds) used to establish the number of 

significant principal components, A). The noise variables from this model was excluded and a 

robust PLS-M2 model (N= 24 and X= 27) with two latent variables (Tables 2, 3 and 4) was 

obtained.  Although the PLS-M2 model contains only the descriptors significantly different 

from zero it has poorer statistical results and predictive power compared to the MLR1 model. 

 

Conclusion 

A series dibenzoylhydrazine insecticide with ecdysone agonistic activity measured in the 

silkworm Bombyx Mori lepidopteran species cell lines was investigated using linear 

regression methods. After structure optimization modeling using the semiempirical quantum 

chemical PM7 approach, calculated descriptors were related to the insecticide activity using 

the multiple linear regression and partial least squares approaches. The final model of 

dibenzoylhydrazine non-steroidal ecdysone agonists obtained using the MLR method have 

good statistical parameters. Molecular descriptors related to molecular flexibility, to sigma 

and pi bonding patterns in molecules and to geometrical descriptors invariant to translation 

and rotation, which contain electronic and topological information influenced the insecticidal 

activity. PLS modeling of the same data gave worser statistical results and a less predictive 

model compared to the MLR one. 
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