

Title

The B–C and C–C bonds as preferred electron source for H–bond and Li–bond interactions in complex pairing of C4B2H6 with HF and LiH molecules

By: Zeinab Saki

### Introduction

- ✓ C4B2H6 and its derivatives have been subject of heoretical studies, molecular and electronic structure calculations, dipole moment, and ionization potential
- ✓ An interesting overview of activities of C4B2H6 could be pictured through its intermolecular interactions such as H-bonding, DHB-bonding and Li-bonding. The traditional idea that the hydrogen atoms involved in the HB should be electron-deficient has been overcome with those cases where both interacting atoms were hydrogen, one positively charged and another negatively charged, and this special kind of hydrogen bond has designated as dihydrogen bond.

## Schematic representation of C4B2H6 structure



**Applications of Carboranes** 

✓ Materials Science

✓ Nonlinear Optics

✓ Medicinal Chemistry

✓ Boron Neutron Capture Therapy (BNCT)

#### C4B2H6–LiH Complexes



6

The SE<sub>uncorr</sub> (uncorrected stabilization energies), BSSE, DZPE, and SE<sub>corr</sub> (corrected with BSSE and DZPE) in kcal mol<sub>-1</sub> calculated at MP2/6-311++G(2d,2p)

| Complex   | SE <sup>uncorr</sup> | BSSE | ΔΖΡΕ | SEcor  |
|-----------|----------------------|------|------|--------|
| HB-F-67   | -1.75                | 0.57 | 0.47 | -0.71  |
| HB-F-7    | -1.74                | 0.53 | 0.42 | -0.79  |
| HB-F-78   | -2.03                | 0.63 | 0.55 | -0.84  |
| DHB-F-12  | -3.29                | 1.00 | 1.23 | -1.06  |
| DHB-F-5   | -4.41                | 1.01 | 1.30 | -2.10  |
| HB-F-bc   | -6.23                | 1.63 | 1.43 | -3.17  |
| LiB-bc    | -14.73               | 1.83 | 1.47 | -11.43 |
| LiB-5     | -10.45               | 0.97 | 1.26 | -8.22  |
| LiB-12    | -7.46                | 0.91 | 1.13 | -5.42  |
| DHB-Li-7  | -4.30                | 0.39 | 0.74 | -3.17  |
| DHB-Li-78 | -4.30                | 0.38 | 0.73 | -3.19  |

Bond length (in A °) of C4B2H6–LiH complexes at MP2/6–311++(2d, 2p)

|         | $C_4B_2H_6$ | LiB-bc     | LiB-5  | LiB-12 | DHB-   | DHB-   | HB-<br>E-67 | HB-<br>F-78 | HB-    | DHB-<br>E-12 | DHB-<br>E-12 | HB-<br>E.bc |
|---------|-------------|------------|--------|--------|--------|--------|-------------|-------------|--------|--------------|--------------|-------------|
| Bond    | r           | $\Delta r$ |        |        | L1-/   | LI-70  | 1-07        | $\Delta r$  | 1-7    | 1-12         | 1-12         | 1-00        |
| C1-H6   | 1.078       | 0          | 0.004  | 0.001  | 0.001  | 0.001  | 0           | 0.001       | 0.001  | 0            | -0.001       | 0           |
| C2-H7   | 1.077       | -0.001     | 0      | 0.001  | 0.005  | 0      | 0           | 0           | 0      | 0.001        | -0.001       | 0           |
| C3-H8   | 1.077       | -0.001     | 0.001  | 0.003  | 0      | 0      | 0           | 0           | 0      | 0.001        | -0.001       | 0           |
| C4-H9   | 1.078       | 0          | 0      | 0.002  | 0.001  | 0.001  | 0.002       | 0.002       | 0.001  | 0            | -0.001       | 0           |
| B10-H5  | 1.183       | -0.004     | 0.009  | -0.001 | 0.002  | 0.002  | 0.001       | 0.001       | 0.001  | -0.001       | 0.006        | -0.002      |
| B11-H12 | 1.173       | -0.001     | -0.001 | 0.011  | 0.002  | 0.002  | 0.001       | 0.001       | 0.001  | 0.006        | -0.001       | 0           |
| B10-B11 | 1.839       | -0.019     | -0.022 | -0.007 | -0.003 | -0.003 | -0.001      | -0.001      | 0      | -0.004       | -0.002       | -0.01       |
| C1-B10  | 1.533       | 0.006      | 0.004  | 0.002  | 0      | 0      | 0           | 0           | -0.001 | 0.001        | -0.005       | 0.006       |
| C1-B11  | 1.717       | -0.001     | -0.002 | -0.016 | -0.003 | -0.002 | -0.001      | -0.001      | -0.002 | -0.006       | 0.004        | -0.005      |
| C1-C2   | 1.442       | 0.004      | -0.001 | 0.005  | 0.001  | 0.001  | 0           | 0.001       | 0.001  | 0.001        | -0.001       | 0.004       |
| C2-C3   | 1.426       | 0.001      | -0.001 | 0      | 0      | -0.002 | 0           | -0.001      | 0      | 0.002        | -0.002       | -0.001      |
| C2-B11  | 1.718       | 0.001      | 0.006  | -0.012 | 0.001  | -0.002 | -0.001      | -0.001      | 0      | -0.004       | 0.002        | -0.002      |
| C3-C4   | 1.442       | 0.004      | -0.003 | 0.004  | 0.002  | 0.002  | 0.001       | 0.001       | 0.001  | 0.001        | -0.001       | -0.001      |
| C3-B11  | 1.718       | -0.002     | 0.008  | -0.002 | -0.004 | -0.002 | -0.001      | -0.001      | -0.002 | -0.003       | 0.002        | 0.004       |
| C4-B10  | 1.533       | 0.006      | -0.01  | 0.003  | -0.001 | 0      | 0           | 0           | 0      | 0.001        | -0.003       | -0.001      |
| C4-B11  | 1.717       | -0.001     | 0.011  | -0.009 | -0.001 | -0.002 | 0           | -0.001      | -0.001 | -0.006       | 0.004        | 0.002       |
| Li–H    | 1.604       | 0.026      | 0.021  | 0.017  | 0.001  | 0.002  | 0.001       | 0.001       | 0.001  | 0.005        | 0.004        | 0.01        |

#### Unscaled vibrational frequencies (cm-1) with corresponding intensities (values given in parenthesis, km mol-1) for C4B2H6–HLi complexes

|         | $C_4B_2H_6$ | 6 LiB-5    |     | LiB-12     |     | DHB-Li-7   |     | DHB-Li-78 |     | LiB-bc                |     |
|---------|-------------|------------|-----|------------|-----|------------|-----|-----------|-----|-----------------------|-----|
|         | v           | v          | Δν  | v          | Δν  | v          | Δν  |           |     | v                     | Δν  |
| C1-H6   | 3246 (0)    | 3213 (6)   | -33 | 3247 (0)   | 1   | 3244 (3)   | -2  | 3242      | -25 | 3257 (0)              | -10 |
| C2-H7   | 3267 (0)    | 3271 (1)   | 4   | 3263 (1)   | -4  | 3197 (110) | -70 | 3242      | -25 | 3283 (5) <sup>a</sup> | 16  |
| C3-H8   | 3267 (0)    | 3261 (1)   | 4   | 3237 (7)   | -30 | 3260 (1)   | -7  | 3242      | -4  | 3274 (6) <sup>b</sup> | 28  |
| C4-H9   | 3246 (0)    | 3251 (1)   | 14  | 3237 (7)   | -9  | 3242 (1)   | -4  | 2781      | -5  | 3257 (0)              | 22  |
| B10-H5  | 2712 (105)  | 2645 (100) | -67 | 2722 (87)  | 10  | 2699 (126) | -13 | 2699      | -13 | 2746 (66)             | 34  |
| B11-H12 | 2786 (45)   | 2803 (30)  | 17  | 2698 (104) | -88 | 2781 (50)  | -5  | 3242      | -4  | 2808 (31)             | 11  |
| X…Y     | -           | 247 (37)   | -   | 209 (165)  | -   | 101 (78)   | -   | 1439      | 21  | 267 (18)              | -   |
| H-Li    | 1418 (229)  | 1361 (389) | -58 | 1370 (318) | -49 | 1442 (349) | 24  |           |     | 1343 (440)            | -75 |

# Topological parameters for the fully optimized complexes

| Complex   | H-bond    | $ ho_{\mathrm{BCP}}$ | $\nabla^2_{ ho { m BCP}}$ | -Gc/Vc |
|-----------|-----------|----------------------|---------------------------|--------|
| LiB-5     | Li…H5     | 0.0122               | 0.0649                    | 1.2177 |
| LiB-12    | Li…H12    | 0.0108               | 0.0587                    | 1.2641 |
| DHB-Li-7  | H14…H7    | 0.0113               | 0.0246                    | 1.06   |
| DHB-Li-78 | H14…H7    | 0.0062               | 0.0158                    | 1.2115 |
|           | H14…H8    | 0.006                | 0.0156                    | 1.2168 |
| LiB-bc    | Li…B–C    | 0.0125               | 0.0665                    | 1.218  |
| HB-F-67   | F13H6     | 0.0039               | 0.018                     | 1.3066 |
|           | F13···H7  | 0.0064               | 0.0284                    | 1.2116 |
| HB-F-7    | F14H7     | 0.0082               | 0.0343                    | 1.1605 |
| HB-F-78   | F13····H7 | 0.0054               | 0.0241                    | 1.2401 |
|           | F13····H8 | 0.0056               | 0.0246                    | 1.2349 |
| DHB-F-12  | H13…H12   | 0.0144               | 0.0399                    | 1.0536 |
| DHB-F-5   | H13H5     | 0.0165               | 0.0453                    | 1.0217 |
| HB-F-bc   | Н…В–С     | 0.0184               | 0.049                     | 1.0236 |