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 The resistance of weeds is a problem which can be overcome by finding new
herbicides. For this purpose, beyond the experimental methods, in silico
approaches can be helpful, as a starting point.

 In this regard, pharmacophore mapping and 3D-QSAR studies were carried out
on several series of herbicide, already known to act on the Photosystem II (PS II)
D1 protein. Using PHASE software, three pharmacophore features, H-bond
acceptor (A), hydrophobic (H) and aromatic ring (R) were taken into account to
be the best hypothesis.

 For this hypothesis an atom-based 3D-QSAR model was generated with
statistically significant parameters (the correlation coefficient of regression (R2)
of 0.839, the standard error of estimates (SD) of 0.370, the Fisher test (F) of 53.7
for the training set, the external explained variance Q2 = 0.640, the Pearson-R =
0.916 and Root Mean Square Error (RMSE) = 0.572, for the test set).

 This hypothesis, validated by the 3D atom-based QSAR approach, assures the
selection of novel scaffolds of herbicide derivatives and can be used for the
design of new chemical entities active on the PS II D1 protein.
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Data set selection and processing
 The datasets consisting of 58 inhibitors of the D1 protein in photosystem II (PSII

D1) were collected from literature [5] and Pubchem database [6,7] AID1101260
and AID1101262.

 In case of ten compounds which show multiple experimental activities, we
considered their average values.

 All structures were converted from smiles code into 3D structures, and ionization
states and tautomers in the pH range of 6.2±0.3 were generated, using the
LigPrep module [8] of Schrödinger suite [9].

 The conformational space for each ligand was developed with the help of
ConfGen module [10,11] using the default options. 217 compounds resulted after
conformer generation and energy minimization based on the OPLS-2005 force
field.

 The pharmacophore hypotheses were generated using eight most active (with
pIC50>7) compounds, while the threshold for inactivity was set to 5 using the
Phase module [12-14] of Schrödinger suite [9].



Table 1. The structure of the most active compounds  (1 to 8), the unaligned ligands (9 and 10) and the less 
active compounds (11 and 12) and their herbicidal activity in logarithmic units



Pharmacophore modeling and validation

 The “Develop Pharmacophore Model” module of Phase software [12-14] implemented in
the Schrödinger suite was used in order to generate all possible pharmacophore hypothesis
using four PLS factors. The number of PLS factors was increased, but the model statistics or
predictive ability did not improve.

 The pharmacophore validation was carried out by atom-based 3D-QSAR regression
including both internal and external validation. The training set includes 80% randomly
selected molecules, whereas the remaining 20% were denominated to validate the model
(test set). The external predictive ability for the test set prediction using Pearson-R was
considered and the models which have values greater than 0.6 were selected.

Taking into account this statistical parameter but also high value of Q2 test (correlation
coefficient of prediction for the test set) and R2 training (correlation coefficient for the
training set) we selected the best QSAR model.



 Ten pharmacophore (Table 2) hypotheses
based on different scaffolds of PSII D1
herbicide derivatives were generated
using three minimum sites: H-bond
acceptor (A), hydrophobic (H) and
aromatic ring (R). The selected
hypothesis AHR.7 (Figure 1) was used for
the generation of the 3D QSAR model
using four PLS factors. This model was
built using the PHASE descriptors as
independent variables and the herbicidal
activity values (expressed as pIC50
values), as dependent variables. Two
unaligned ligands (compound no 9 and
no 10) of AHR.7 hypothesis, were
excluded as outlier, see Table 1.

 A graphical representation of the
significant favourable and unfavourable
features for the herbicidal activity of the
compounds that resulted when the QSAR
model is applied is shows in Figures 3 to
6.

Figure 1. The pharmacophore hypothesis AHR.7 (acceptor 

(A1, pink), hydrophobic (H6, green), ring (R8, orange)) 

aligned to the compound 2 with best Fitness score = 3



# Number of factors in the partial least squares
regression model; SD - standard deviation of the
regression; R2 - the coefficient of determination; F -
the ratio of the model variance to the observed
activity variance; P - the significance level of variance
ratio; Stability – the stability of the model
predictions; RMSE – the root-mean-square error in
the test set predictions; Q2 - value for the predicted
activities, analogous to R2, but based on the test set
predictions; r (Pearson-R) - value for the correlation
between the predicted and observed activity for the
test set;
*for the training set; $ for the entire data set; # for the
test set.

Table 2. The statistical parameters obtained for the QSAR models

y = 0.8391x + 0.9621

R2 = 0.8392

y = 0.608x + 2.714

Pearson R = 0.916
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Figure 2. The plot of observed versus predicted 
herbicidal activities for the model with the 

pharmacophore AHR.7 hypothesis



Figure 3. The QSAR model visualized in the context 

of the best aligned  compound (no 2) with AHR.7

Figure 4. The QSAR model visualized in the context of the 

most active compound (no 3) of the test set



Figure 5. The QSAR model visualized in the context of 

the less active compound  (no 11) of the training set

Figure 6. The QSAR model visualized in the context of the 

less active compound  (no 12) of the test set



 Pharmacophore-based 3D-QSAR study of PSII D1 inhibitors is carried
out in order to explain the structural features of some herbicide
derivatives (pyrimidine, pyridine, cinnoline, triazine and quinine)
required for their inhibitory activity.

 The selected 3D-QSAR model indicates a significant correlation and a
good predictive capacity. One hydrogen bond acceptors (A), one
lipophilic/hydrophobic group (H) and one aromatic ring (R), as
pharmacophore features, are important for the PSII D1 herbicidal
activity. The best hypothesis AHR.7, in this study, is characterized by
the best values of the R2 regression coefficient (0.839) and the
highest values for the Pearson-R coefficient (0.916).

 In future studies this pharmacophore model will be used for
screening molecular databases in order to find potential new
herbicides.

Conclusion
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