

3rd International Electronic Conference on Sensors and Applications

15-30 November 2016, online

Surface-enhanced Raman spectroscopy study of commercial fruit juices

Carlo Camerlingo¹, Marianna Portaccio², Rosarita Taté³, Maria Lepore², Ines Delfino^{4,*}

¹CNR-SPIN, Consiglio Nazionale delle Ricerche, Institute for superconductivity, innovative materials and devices, Pozzuoli, Italy.
²Dip. Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy.
³Institute of Genetics and Biophysics – ABT, Naples, Italy.
⁴Dip. Scienze Ecologiche e Biologiche, Università della Tuscia, Viterbo, Italy.

*Correspondence:<u>delfino@unitus.it</u>; Tel.: +39-0761-357-026

Fruit juice and pulp characterization by SERS Spectroscopy

Characterization of fruit juice and pulp by SERS spectroscopy using visible light ($\lambda = 632.8$ nm) and a micro-Raman spectroscopy setup

Surface enhanced Raman Spectroscopy (SERS) using a home-made Gold nanoparticle-based substrate.

Numerical background subtraction by wavelet based algorithm.

Evaluation of juice and pulp contents (glucose, fructose and pectin and so on)

Contamination or degradation processes

Territorial characterization

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

Micro-Raman Spectroscopy_

Spectral analysis methods are FAST, NONINVASIVE and usually INEXPENSIVE: They are particularly suitable for food characterization and food process monitoring and food quality evaluation (also in situ and online).

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

collective oscillations of conduction electrons: LOCALIZED SURFACE PLASMON RESONANCES

high local enhancements of the electromagnetic energy (large enhancement of Raman signal)

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

Au nanoparticles (GNPs): Fabrication process_

Turkevich and Frens method: the reducing agent (sodium citrate) acts as stabilizing agent by adsorbing onto the metal surface and avoiding nanoparticle aggregation through electrostatic repulsions.

I. Delfino, M. Lepore, R. Taté, M. Portaccio, Int. Electronic Conference on Sensors and Applications 2014 (<u>www.mdpi.com/journal/sensors/</u>)

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

GNPs of different sizes can be obtained, depending on the amount of sodium citrate. They were characterized by using DLS, TEM and absorption spectroscopy W. Haiss et al, Anal. Chem. 79 (2007)

TEM images; size bar 100 nm

Position of the Plasmon Resonance peak as a function of the particle diameter for GNPs in water.

Estimated GNP Size by Absorption A: 20±2 nm B: 47±5 nm Estimated GNP Size by TEM and DLS A: 18±10 nm B: 47±13 nm (greater dispersion)

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

GNP preparation based SERS Substrates_

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino ((() Ser

Numerical Data treatment based on wavelet algorithm

C. Camerlingo et al, Meas. Sci. Technol. 17 (2006) 298.

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

Raman and SERS spectra of apple juice

Raman spectra of clear apple juice (data not treated) for bare juice drop (a), juice drop on Apreparation based substrate and for (b) juice drop on B-preparation based substrate (c). The spectra are arbitrarily shifted along the y-axis.

When B-preparation GNP based substrates is used Raman features are observed → SERS

By using this substrate SERS spectra are detected also for commercial pulp (NO GNP based substrate = undetectable Raman signal)

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

SERS spectra of apple juice and pulp (low frequency range)_

Deconvolution in Lorentzian functions of SERS spectrum in the range 350-700 cm⁻¹ of clear apple juice on B-preparation based substrate. Red line is the convolution of the peaks found. Black peaks are assigned to fructose (peaks at 417, 475, 512, 591, 624 cm⁻¹), while orange ones refer to pectin (539, 679 cm⁻¹).

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

SERS spectrum of apple juice (high frequency range)

Deconvolution of Raman (SERS) spectrum of apple juice. An attempt of assignment of Raman modes for the main components of the apple juice is indicated. The strong peak at about 1600 cm⁻¹ is presumably generated by residual fiber content (lignite).

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

SERS spectrum of apple/pear smashed pulp (high frequency range)_____

Deconvolution of SERS spectrum of apple/pear smashed pulp. An attempt of assignment of Raman modes for the main components is indicated.

Surface-enhanced Raman spectroscopy study of commercial fruit juices C. Camerlingo, M. Portaccio, R. Tatè, M. Lepore, I. Delfino

Peak wavenumber (cm ⁻¹)	Pectin	Fructose	β–carotene	Refs.
845	C-O-C antisymmetric stretching of the glycoside linkage	-	-	21
918	In-plane bending of CH ₂	Furanose isomer	-	20
1004	-	-	Methyl component rocking	23
1056	Nonlocalized, highly coupled vibrational modes of polysaccharide backbones	-	-	21
1132	-	Pyranose isomer	-	20
1153	-	-	C-C stretching	23
1265	-	D- fructose	-	20
1361	C-H bending	-	-	21
1427	COO ⁻ symmetric stretching	-	-	21
1520	-	-	C=C stretching	23
1552	Amide II: N-H deformation Contribution from C-N stretching	-	-	21

Tentative assignment of main Raman modes found in apple juice spectra

Table taken from C. Camerlingo, F. Zenone, I. Delfino, N. Diano, D.G. Mita, M. Lepore, Investigation on clarified fruit juice composition by using visible light micro-Raman spectroscopy, Sensors **7** (2007) 2049-2061. 20. Cerchiaro, et al Carbohydrates Research 2005, 340, 2352-2359.

21. Engelsen, S.B.; Noorgard L. Carbohydrates Polimers 1996, 30,9-24.

23. Koyama, Y. et al. J. Raman Spectrosc. 1988, 19, 37-49.

- ✓ The realized home-made GNP based substrate has enabled to obtain clear Raman spectra of commercial apple juice and pear/apple smashed pulp, that feature a low Raman signal.
- ✓ The detected good SERS spectra enabled to evidence the presence of fructose and pectin in the untreated samples.
- ✓ The overall inspection of the results has confirmed the potentialities of SERS in food industry especially for the eventual on-line product evaluation.

