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Introduction

• Recognition of objects by touch is one of the first steps to 
enable robots to help humans in everyday activities.

• Many applications such as health and elder care, 
manufacturing, and high-risk environments involve tasks 
that require robots to handle objects that are out of their 
field of view or partially obstructed.

• Object recognition by touch can be divided in recognition 
through static or dynamic touch. 
– In static touch recognition, the tactile sensing apparatus 

establishes contact with an object and collects tactile data 
while the object is still related to the probe. 

– In the recognition through dynamic touch, the tactile apparatus 
gathers data while the sensors slide over the object’s surface.



Our approach

• This paper focuses on the issue of tactile profile recognition 
through a sliding motion performed by a robot finger 
comprises  3 motors equipped with a tactile probe. 

• The tactile probe comprises a 9-DOF MEMs MARG 
(Magnetic, Angular Rate, and Gravity) system and deep 
MEMs pressure (barometer) sensor, both embedded in a 
compliant structure. 

• This setup collects data over seven 3D printed profiles. 
• The data collected is then subjected to a wavelet 

decomposition stage, principal component analysis and 
classification using a multilayer perceptron neural network.



Our approach

Wavelet 
decomposition

Principal 
Component 
Analysis

Multilayer 
Perceptron 
Classification

Acceleration
Angular Velocity
Magnetic Field
Pressure

5th approx. level

90% of PCs

Shape Number



Experimental setup



Sensor placement



Shapes used in the experiment
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Results

Sensor Accuracy (%)
Accelerometer X 92

Accelerometer Y 92.6

Accelerometer Z 85.1

Gyroscope X 98.3

Gyroscope Y 93.3

Gyroscope Z 98.9

Magnetometer X 88

Magnetometer Y 86.9

Magnetometer Z 91.4

Barometer 98.9

Classification results according to sensor type.



Results: Confusion tables
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