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Structural Health Monitoring can be conceptually divided in three stages: 

in our work, we will focus on the design of the sensor network
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The usefulness of the sensor network depends on the 

number, type and location of the sensors. Therefore, 

we need a method to quantify the information obtained

by the acquisition system.



Optimal sensor placement: deterministic methods

EFI

KE

EVP

M. Meo, G. Zumpano, (2005),  M. Bruggi, S. Mariani, (2013), Leyder, C., Ntertimanis, V., Chatzi, E., Frangi, A. (2015).

Sensitivity to damage

The existing approaches does not take into account the measurement

noise, i.e. the sensors accuracy.



Optimal sensor placement: Bayesian framework

X. Huan, Y. M. Marzouk, (2013). 

Expected gain in Shannon information
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Monte Carlo sampling

Prior:   𝜽~𝑝 𝜽
Likelihood:    𝒚~𝑝(𝒚|𝜽, 𝒅)
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In a Bayesian sense, the optimal spatial configuration 𝒅∗ of the sensor

network can be found by maximizing the Shannon information gain. In 

order to compute it, we use a Monte Carlo approximation.



Model evaluation

• Evaluation of the likelihood

𝑝 𝒚𝑖 𝜽𝑗 , 𝒅 = 𝑝𝛜 𝒚𝑖 − 𝑮 𝜽𝑗 , 𝒅

𝑮 𝜽, 𝒅 = 𝑳 𝒅 𝑲(𝜽)−1𝑭
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• Forward model

𝒚 = 𝑮 𝜽, 𝒅 + 𝛜

Measurement noise

The measurements are related to the mechanical parameters to be estimated

through a FEM-based forward model. The sensor accuracy is taken into

account through a fictitious measurement noise.



Optimization

𝜽𝑖~𝑝 𝜽 , 𝒅𝑖~𝒰 𝓓
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• Surrogate model: polynomial chaos expansion

• Optimization: Covariance Matrix Adaptation Evolution Strategy

(CMA-ES)

1.  𝒅𝑖~𝒎+ 𝜎𝒩𝑖 𝟎, 𝑪 𝒎 ∈ ℝ𝑛𝒅 , 𝑪 ∈ ℝ𝑛𝒅×𝑛𝒅

2. 𝒎 and 𝑪 are updated through cumulation

3. Check the tolerance on 𝑈 𝒅

N. Hansen, S.D. Müller, P. Koumoutsakos, (2003).

In order to reduce the computational cost of the forward model, a cheaper

surrogate model is built.



Bayesian OSP framework

Sample input variables

𝜽𝑖~𝑝 𝜽 , 𝒅𝑖~𝒰 𝓓

𝑿𝑖= 𝜽𝑖
𝑇 𝒅𝑖

𝑇

System response

𝑮𝐹𝐸 𝜽𝑖 , 𝒅𝑖

PCE surrogate

𝑮𝐹𝐸 𝜽𝑖 , 𝒅𝑖 ≅ 𝑮𝑃𝐶𝐸 𝜽𝑖 , 𝒅𝑖

Maximizing information

Sample design variable

𝒅𝑙

MC approximation

𝑈(𝒅𝑙)

Update 𝒅𝑙→ 𝒅𝑙+1 (CMA-ES)

Check tolerance on  𝑈 𝒅𝑙 − 𝑈 𝒅𝑙+1

Optimal configuration 𝒅∗

Training surrogate model



Application: simply supported plate

10x10 mesh: 726 d.o.f.

Displacement measurements

4 zones: 𝜽 = 𝐸1, 𝐸2, 𝐸3, 𝐸4



Application: simply supported plate

Choice of prior distribution 𝑝 𝜽

𝑝 𝜽 ~𝒰 0, 𝐸 𝑝 𝜽 ~𝒰
2 𝐸

3
, 𝐸

𝑁𝑠: # sensors

𝑁𝑃𝐶𝐸: # PCE samples

𝑝: PCE polynomial degree

𝑁𝑀𝐶: # MC samples

𝜽 = 𝐸1 𝐸2 𝐸3 𝐸4

𝑁𝑠 = 4,𝑁𝑃𝐶𝐸 = 104, 
𝑝 = 10, 𝑁𝑀𝐶 = 5 · 103

Optimal position of 𝑛𝑠 = 4 sensors, results of 10 algorithm runs



Application: simply supported plate

Effect of σ𝛜
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𝑁𝑠 = 1,𝑁𝑃𝐶𝐸 = 104, 
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σ𝜖 = 10−3 m σ𝜖 = 10−4 m σ𝜖 = 10−5 m

𝑁𝑠: # sensors

𝑁𝑃𝐶𝐸: # PCE samples

𝑝: PCE polynomial degree

𝑁𝑀𝐶: # MC samples

Contour of the objective function with one sensor for each possible location 

on the plate with different standard deviations of the measurement noise.



Application: simply supported plate

Effect of σ𝛜 and number of sensors

𝜖~𝒩 0, 𝜎𝜖
2

𝜽 = 𝐸2
𝑁𝑃𝐶𝐸 = 104, 
𝑝 = 10, 𝑁𝑀𝐶 = 5 · 103

𝑁𝑠: # sensors

𝑁𝑃𝐶𝐸: # PCE samples

𝑝: PCE polynomial degree

𝑁𝑀𝐶: # MC samples

Contour of the objective function with one sensor for different standard 

deviations and number of sensors.



Conclusions

• Optimal sensor placement and SHM system design

• Take into account:

- Measurements uncertainties

- Number of sensors

• Maximization of expected information gain between prior and 

posterior

• Use of surrogate model (PCE) for MC approximation and stochastic 

optimization (CMA-ES) methods for computational speed-up

• Future developments: larger number of sensors, larger number of 

parameters, application to complex cases

Bayesian optimal experimental design
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