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Abstract: Today sensor data processing and information mining become more and more complex 

concerning the amount of sensor data to be processed, the data dimension, the data quality, and the 

relationship between derived information and input data. This is the case especially in large-scale 

sensing and measuring processes embedded in Cloud environments. Measuring uncertainties, 

calibration errors, and unreliability of sensors have a significant impact on the derivation quality of 

suitable information. In the technical and industrial context the raising complexity and distribution 

of data processing is a special issue. Commonly, information is derived from raw input data by 

using some kind of mathematical model and functions, but often being incomplete or unknown.  

If reasoning of statements is primarily desired, Machine Learning can be an alternative. 

Traditionally, sensor data is acquired and delivered to and processed by a central processing unit. 

In this paper, the deployment of distributed Machine Learning using mobile Agents forming  

self-organizing and self-adaptive systems (self-X) is discussed and posing the benefit for the 

enhancement of the sensor and data processing in technical and industrial systems. This also 

addresses the quality of the computed statements, e.g., an accurate prediction of run-time 

parameters like mechanical loads or health conditions, the efficiency, and the reliability in the 

presence of partial system failures 
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1. Introduction 

In the last decades there was a shift from passive single sensors towards networks of smarts 

sensors equipped with Information-Communication Technologies (ICT). Furthermore, there was  

a significant increase of the sensor density in sensor networks [1], shown in Figure 1. Ongoing 

miniaturization of sensors and new micro-system technologies enable the integration of sensor 

networks in materials and technical structures [2]. In contrast to generic computer networks, 

Material-integrated sensor networks pose specific requirements and constraints of the information 

processing regarding resources, computational latency, energy consumption, and robustness. 

Usually there is limited or no possibility of maintenance in the case of technical failures, demanding 

self-organizational and self-adaptive ICT systems. The size of a smart sensor node reaches currently 

the mm3 scale, like the Smart Dust Mote [3]. 

On one side there is a miniaturization trend making things smaller, on the other side there is  

a growing demand for Cloud computing and solutions, e.g., used for coupling of production, 

design, and products for life-cycle management [4]. A Cloud is characterized by its localized 

virtualization of storage and computational power, commonly using service-based architectures. A 

Cloud provides a coarse-grained distribution primarily offered by data centers that are scalable by 
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adding servers and more data centers. Cloud environments make a significant contribution for 

solving the Big-data issue and the information extraction of a large set of uncorrelated data. 

Future industrial environments consisting of production, design and customers require multi-scale 

data processing, from micro- to macro-scale computing. These computing and networking 

environments are strongly heterogeneous, regarding host platforms and network technologies. 

 

Figure 1. Generations of Sensors: From passive Sensors towards Sensor Clouds. 

This article points out new methodologies using mobile and learning agents, enabling the 

design of efficient and scalable data processing of the future in sensor and industrial networks.  

Self-organizing and self-adaptive structures will be key methodologies decreasing the 

administrative work and increasing the reliability, and finally integrating Cloud-based solutions. 

2. Multi-Agent Systems and Industrial Agents 

Agents are semi- or full autonomous computational units. They consist basically of a 

perception, control, and planning module accessing private data and encapsulated by a 

computational process. This process is characterized by its dynamic control- and data state. The 

private data of an agent bases firstly on a perception process of the environment (e.g., sensor data), 

and secondly on computed data. The dynamic behaviour and behaviour adaption (of the control 

module) depending on current and past data are essential features of an agent. The adaptivity is 

strongly related to the concept of learning. 

The behaviour of agents is related to living things, e.g., the widespread Belief-Desire-Intention 

(BDI) architecture [5], mostly using declarative descriptions. An Activity-Transition Graph (ATG) 

(see Figure 2) is a more simplified behaviour model, which models the behaviour of the agent using 

a set of activities. Activities (the nodes of the graph) perform actions, e.g., computation data and 

interaction with the environment including migration. There are transitions between activities  

(the edges of the graph), commonly depending on conditions and private data of the agent. The ATG 

model is suitable to meet the high-level features of agents: Autonomy, social abilities, reactivity,  

pro-activity, and self-organization combined with self-adaptivity (self-X). 

The activities (i.e., statement blocks) allow a partitioning of the overall agent behaviour 

basically defining the goals of the agent, and they can be considered as coarse-grained execution 

steps. Activities are executed by an agent platform as a host. An ATG can be modified at run-time by 

the agent itself, enabling self-adaption, by other agents, or by the platform. The modification of the 

ATG is done by a change of the transitions and/or activities (removal, exchange, addition). 
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Agents are already successfully deployed in industrial environments, mainly for planning tasks [6] 

and manufacturing control [7], but increasingly for global networking of production and design 

processes [4]. 

 

Figure 2. Activity-Transition Graphs for simple modeling of the agent behaviour. 

Beside the control of production processes agents are deployed in fields of maintenance, 

modular production systems (assembly control), quality control, and energy management.  

Self-organizational and adaptive capabilities of agents play an increasing role in industrial 

environments. The new paradigm of industrial agents can provide a significant contribution to 

future modular and flexible industrial environments embedded in Clouds. 

Mobile agents are capable to transfer a snapshot, consisting of their data and control state,  

from one to another agent platform, enabling a seamless execution of agents. Mobile agents can 

reflect a mobile service architecture. 

Multi-agent systems consist of a large number of different agents communicating with each 

other. Communication can take place directly by using messages (e.g., FIPA-ACL), or implicitly and 

much more decoupled by using tuple spaces with pattern matching search [8]. In distributed 

systems a big task is mapped on many simple tasks using agents, following the divide-and-conquer 

approach. One example is distributed Data Mining with a Map & Reduce approach. 

Scaling of industrial data processing applications towards complex cloud-based and 

widespread distributed networks including sensor networks results in the deployment of thousands 

and millions of agents. The agent processing platform is therefore a central key technology, 

discussed later. 

3. Distributed Machine and Agent Learning 

Machine Learning (ML) can be classified in supervised, reward feedback, and non-supervised 

learning, shown in Figure 3. Trained supervised learning is commonly used for a deviation of  

a classification function K: f(x) → l using a learner (model builder) M: f(D) → K from a labeled data 

set D, consisting of x   X n-dimensional vectors, e.g., sensor data S, and a set of associated labels 

(symbols) l   L. The classification function is derived in the learning phase, applying known labels 

to known data sets performed either by a human or a machine. An application phase follows the 

learning phase, applying the classificator to an unknown data set x and delivering a prediction of  

a label l. An example is shown later using ML to recognize (classify) different load situations of  

a mechanical structure from sensor data. Feedback learning (e.g., reinforcement learning with 

reward feedback) assesses the actual perception regarding the effect of selected actions and tries to 

adapt the behaviour planning to choose appropriate actions finally to reach defined goals. 
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Unsupervised learning is commonly used for data clustering, and can be considered as a  

self-organizing approach. 

The concept of machine learning and agents can be combined offering synergy. Mobile agents 

are suitable for exploration tasks in spatially distributed network regions, i.e., collecting and 

processing of sensor data. The distributed sensor data can be used to learn classification models 

related to specific situations, e.g., different load situations of a mechanical structure. The learned 

model can be carried by a learner agent and applied at another location. This capability is important 

in mobile network environments, especially using mobile devices like smart phones as sensor nodes. 

The mobility of the learner can be also used to migrate between different mobile devices and 

collecting sensor data from different devices (e.g., smart phones) within a spatially bounded region 

(Ubiquitous Computing, [9]). Reinforcement learning is closely related to the agent model due to 

their adaptive behaviour and planning of actions based on perception. Possible actions of such 

learner agents can be the optimization of actuator and machine control. 

 

Figure 3. The combination of Machine Learning and Agents creates synergies for the composition of 

complex systems. 

Beside classical learn algorithms with separated learning and application phases the usage of 

incremental (on-line) learners gains importance [10]. They can collect new data sets at run-time to 

improve an already learned model (e.g., decision tree learner or neuronal networks) without the 

requirement to save the entire training data set base. 

Usually learner are centralized, i.e., all input data is collected and processed by one program. 

This architecture introduces a single point of failure and high data stream densities in the network. 

But there are approaches to distribute learners using agents. One possible approach bases on the 

partitioning of the learning process in multiple local learners operating on a data sub-set. The locally 

learned models are finally fusioned to a global model. This is realized by partitioning the (sensor) 

network in spatial regions (Regions of Interest ROI) and deploying multiple learners with each 

learner operating in a specific ROI. Learning of classification models and application uses hence only 

a local data set providing a local view of the world. From a global view, the results from multiple 

local classifications can differ. A suitable method to derive a reliable global classification (building 

the global model) can be provided by a majority election and voting process. Each local learner votes 

for a classification prediction. The assumption made is that the majority decision delivers the most 

probable result. The distributed learner systems have a very good scaling capability compared to 
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central learner, and there is no single point of failure. Defective nodes or missing votes only lower 

the global prediction accuracy. 

Formally, the spatial distribution of the learning processes deriving a classification model from 

sensor data is given by: 

𝐾: 𝑓(𝐷𝑙) → 𝑀                                                𝑘𝑖,𝑗: 𝑓(𝑑𝑖,𝑗
𝑙 ) → 𝑚𝑖,𝑗   

𝑀:𝑓(𝑆) → 𝑙                                            𝑚𝑖,𝑗: 𝑓(𝑆𝑖,𝑗) → 𝑙𝑖,𝑗   
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if S = (s1, s2, ...) is a matrix (or vector) of single spatially distributed sensors with data xn,m at position 

(n, m), and Si,j a sub-matrix around a spatial center point (i, j), K the global, and ki,j the local learned 

classification function (model). The training data sets consist of tuples (s, l) with an associated label. 

4. Agent Platforms 

The agent processing platform is an enabling technology in strong heterogeneous environments 

that supports the seamless migration of mobile agents between different host platforms and network 

environments without any further transformation. Currently existing agent platforms cannot handle 

a large number of agents (below 1000 agents), and the deployment is often limited to the laboratory 

scale [7]. If the multi-agent approach should be applied to large scale problems, a significant larger 

number of agents must be handled.  

Furthermore, the deployment of agent platforms in strong heterogeneous environments, e.g.,  

by connecting sensor, industrial, and inter-networks, demand for different platform 

implementations (Hardware, Software, Simulation, Browser & Server) on different host platforms 

(microchip, embedded and mobile system, generic computer, server, WEB browser), shown in Figure 4. 

There are only a few prototypical agent platforms delivering this broad range of implementations. 

One example is the portable JavaScript Agent Machine (JAM) platform [11], being capable to execute 

agents with mobile JavaScript code efficiently. This code also embeds the control and data state of an 

agent.  

 

Figure 4. Different host platform levels, implementations, and Agent platforms (JAM: [11], PAVM: 

[12], CAVM: [13], PCSP: [14], JADE: [15]). 
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A solution based on a stack-processor is used in the Pipelined Agent Virtual Machine (PAVM) 

[12], which also includes the hardware implementation level. The PAVM executes FORTH code with 

embedded data. Both PAVM and JAM base on the ATG agent model and are being basically 

compatible on an operational level. 

The JAM platform is one of the few platforms offering Machine Learning as a service, i.e.,  

a learner agent saves only a learned model, but not the learner code, increasing efficiency of mobility 

significantly, which depends on the agent’s code size. 

The deployment of mobile agents and agent platforms in the Internet or industrial networks 

require additional organization and security structures. E.g., in a material-integrated sensor network 

all nodes have a geometric neighbourhood connectivity, not existing in the Internet. Additionally, 

the Internet is a network-of-networks. Mobility of agents therefore require virtual connectivity and 

communication structures delivered by the platform as a service. One possible approach are 

distributed directory services placing host and agent platforms in domains based on, e.g., 

geographic coordinates [11,12]. This virtual world is required for mobile agents making decisions 

about the direction they will move. Finally, directory graphs can reflect hierarchical network 

structures and network-of-networks. 

Mobility of agents, i.e., processes, require two important features: (I) Efficient creation of  

a process snapshot in program format, containing the code and the actual control and data state of 

the process; (II) Low dependency of the program on the platform interface, the host platform 

(computer architecture), and on the network architecture and topologies. This concludes the 

avoidance of binary machine code. The programming language JavaScript provides an isomorphic 

transformation between the actually executed code and program text at run-time on common virtual 

machines (node.js, Google V8, etc.). Furthermore, the capabilities to reconfigure and adapt the agent 

behaviour require the capability to modify the program code of an agent at run-time (often by the 

agent itself). 

5. Example: Load Monitoring of Mechanical Structures 

A major application example for distributed learning with respect to the approach from 

Equation (1) is Load and Structural Health Monitoring (LM/SHM) of mechanical components, 

shown in Figure 5a. Learning can be used to recognize different load situations (l1, l2, ...) derived 

from sensor data without any specific mechanical model of the component (e.g., a Finite-Element 

model). It is assumed that a sensor network delivers the required spatially resolved sensor data from 

strain gauge sensors, either applied to the surface of the component or integrated in the material, 

shown in Figure 5a. Each node of the network are provides beside sensors the agent platform. A 

specific load situation has impact on the component, e.g., it is useful to recognize situations causing 

damages or delivering input for a device control to reduce loads. 

In this scenario a Multi-agent system consisting of a couple of different mobile and non-mobile 

agents populate the network (see Figure 5b). The agents have different goals, tasks, and behaviour: 

 Node agent: Each sensor node is populated with a non-mobile node agent performing sensor 

acquisition, sensor preprocessing, and event detection (i.e., recognizing a significant stimulus). 

A node agent can instantiate new agents for specific tasks or notify already working agents. 

 Learner agent: Each sensor node has at least one learner agent, which is instantiated and 

activated by the node agent if there was a sensor stimulus detected. This learner has  

two different modes: (I) Learning (II) Classification with a learned model. The mode selection is 

performed by notification agents, distributed in the network and (I) Notifying learners about  

a characteristic load situation (providing a label l) and induce the learners to create a training 

data set with a specific label; (II) Switching learners to application mode. The learner agents 

have access to sensor data from the near neighbourhood, collected by explorer agents and 

passed by the tuple space data base (a platform service). The learners create a local sensor-load 

situation model. 

 Exploration agent: This agent delivers input for the prediction of a significant sensor stimulus 

and for the learning with sensor data in a spatially constrained Region of Interest (ROI).  
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The spatial sensor exploration is performed with a divide-and-conquer approach by a set of 

exploration agents collecting the sensor data and delivering the data to the node or learner 

agents. Each explorer agent operating on a specific node in the ROI creates explorer child agents 

exploring data on neighbourhood nodes. 

 Voting agent: If a learner agent classifies a load situation from his local view (and the local 

model using local data) it will send out voting agents with a prediction of the load situation. 

The voting agents deliver the votes to election agents, which perform a majority election for a 

global and most probable prediction of a load situation. 

Most agents are created dynamically by other agents, e.g., the exploration agents are created by 

node, learner, and other explorer agents. Agent interaction takes place by using tuple spaces 

(synchronized data exchange based on patterns). Furthermore, mobile signals are used for 

notification of other agents. 

 
(a) 

 
(b) 

Figure 5. (a) Technical structure equipped with a sensor network and connected to Intra- and 

Internet environments (b) Logical network view and deployment of multiple agents instantiated 

from different agent behaviour classes. 

In [16] an example network consisting of 64 sensor nodes deploying such a MAS was simulated, 

shown in Figure 5a,b. It is assumed that the mechanical structure is equipped with spatially 

distributed strain gauge sensors. Depending on the load situation and the change of sensor values 
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the network has peak populations with several hundred up to thousand agents, most of them 

migrating between nodes. An efficient processing and migration of agents can be realized with the 

JAM platform. The used simulator was built on top of a JAM platform. 

A major advantage is the event-based sensor processing activating only stimulated areas,  

in contrast to common continuous stream-based processing activating the entire network and 

creating high communication load. The event-based approach reduces computational and 

communication workload significantly (up to 90%). JAM agents can migrate between different 

network environments, i.e., between sensor networks and the Internet, enabling a partition in 

on-line and external off-line processing, e.g., combining on-line learning with off-line computational 

intensive numeric methods [17]. This feature enables the seamless integration of sensor network  

in Clouds. 

The simulation results of the distributed learning and the election approach showed a good 

classification quality of different load situations with a reasonable high prediction probability [15]. 

The mean accuracy of the global classification (correct positive votes) was about 80% (i.e., 20% of the 

votes were incorrect). 

6. Conclusions 

Growing complexity and heterogeneity of industrial networks and their integration in the 

Internet and Cloud environments requires self-organizing and self-adaptive approaches composed 

of autonomous basic cells. Multi-agent systems are suitable to provide a scalable and efficient ICT 

approach for robust system design, enhanced by learning agents. Structural monitoring is one major 

field of application for the MAS deployment, shown by an example use case and evaluated by 

simulation. MAS maps the entire complex problem to be solved on multiple simple agents differing 

in their behaviour, goals, and operations. Local learning with global fusion based on a majority 

decision making process is an appropriate method to identify specific situations in a distributed 

sensor network, e.g., a reliable recognition of mechanical load situations. 

The agent platform is a key technology. The introduced JAM platform that is entirely 

implemented in JavaScript provides a portable multi-platform processing platform for mobile 

agents, suitable for strong heterogeneous environments. The agents are programmed in JavaScript, 

too, and snapshots of agent processes can be transferred with JavaScript text-code embedding the 

control and data state of the agent process. The text-code can be executed by any host platform (no 

machine dependencies). This enables a seamless migration of agents between different host 

platforms and networks. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Di Lecce, V.; Calabrese, M.; Martines, C. From Sensors to Applications: A Proposal to Fill the Gap.  

Sens. Transducers 2013, 18, 5–13. 

2. Lehmhus, D.; Brugger, J.; Muralt, P.; Pané, S.; Ergeneman, O.; Dubois, M.-A.; Gupta, N.; Busse, M.  

When nothing is constant but change: Adaptive and sensorial materials and their impact on product 

design. J. Intell. Mater. Syst. Struct. 2013, 24, 2172–2182. 

3. Warneke, B.; Last, M.; Liebowitz, B. Smart dust: Communicating with a cubic-millimeter computer. 

Computer 2001, 31, 44–51. 

4. Lehmhus, D.; Wuest, T.; Wellsandt, S.; Bosse, S.; Kaihara, T.; Thoben, K.-D.; Busse, M. Cloud-Based 

Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift. Sensors 2015, 15, 

32079–32122. 

5. Bordini, R.H.; Hübner, J.F. BDI Agent programming in AgentSpeak using Jason. In Proceedings of the 6th 

International Conference on Computational Logic in Multi-Agent Systems (CLIMA’05), London, UK,  

27–29 June 2005; Springer: Berlin/Heidelberg, Germany, 2006; pp. 143–164. 

6. Caridi, M.; Sianesi, A. Multi-agent systems in production planning and control: An application to the 

scheduling of mixed-model assembly lines. Int. J. Prod. Econ. 2000, 68, 29–42. 

  



Proceedings 2017, 1, 14 9 of 9 

 

7. Pechoucek, M.; Marík, V. Industrial deployment of multi-agent technologies: review and selected case 

studies. Auton. Agent. Multi-Agent Syst. 2008, 17, 397–431. 

8. Chunlina, L.; Zhengdinga, L.; Layuanb, L.; Shuzhia, Z. A mobile agent platform based on tuple space 

coordination. Adv. Eng. Softw. 2002, 33, 215–225. 

9. Pournaras, E.; Moise, I.; Helbing, D. Privacy-preserving ubiquitous social mining via modular and 

compositional virtual sensors. In Proceedings of the 2015 IEEE 29th International Conference on 

Advanced Information Networking and Applications, Guwangiu, Korea, 24–27 March 2015; pp. 332–338. 

10. Jiang, F.; Sui, Y.; Cao, C. An incremental decision tree algorithm based on rough sets and its application 

in intrusion detection. Artif. Intell. Rev. 2013, 40, 517–530. 

11. Bosse, S. Mobile Multi-Agent Systems for the Internet-of-Things and Clouds using the JavaScript Agent 

Machine Platform and Machine Learning as a Service. In Proceedings of the IEEE 4th International 

Conference on Future Internet of Things and Cloud, Vienna, Austria, 22–24 August 2016. 

12. Bosse, S. Unified Distributed Computing and Co-ordination in Pervasive/Ubiquitous Networks with 

Mobile Multi-Agent Systems using a Modular and Portable Agent Code Processing Platform.  

In Proceedings of the 6th International Conference on Emerging Ubiquitous Systems and Pervasive 

Networks, Berlin, Germany, 27–30 September 2015. 

13. Zhou, B.; Zhu, H. A Virtual Machine for Distributed Agent-oriented Programming. In Proceedings of the 

Twentieth International Conference on Software Engineering & Knowledge Engineering (SEKE’2008),  

San Francisco, CA, USA, 1–3 July 2008. 

14. Bosse, S. Distributed Agent-based Computing in Material-Embedded Sensor Network Systems with the 

Agent-on-Chip Architecture. IEEE Sens. J. 2014, 14, 2159–2170. 

15. Bellifemine, F.; Caire, G. Developing Multi-Agent Systems with JADE; John Wiley & Sons, Ltd.: Hoboken, NJ, 

USA, 2007. 

16. Bosse, S. Structural Monitoring with Distributed-Regional and Event-based NN-Decision Tree Learning 

using Mobile Multi-Agent Systems and common JavaScript platforms. Procedia Technol. 2016, 

doi:10.1016/j.protcy.2016.08.063 

17. Bosse, S.; Lechleiter, A.; Lehmhus, D. Data evaluation in smart sensor networks using inverse methods 

and artificial intelligence (AI): Towards real-time capability and enhanced flexibility. In Proceedings of 

the CIMTEC—7th Forum on New Materials, Perugia, Italy, 5–9 June 2016. 

©  2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


