

DEVELOPMET OF AN ASSET LIFETIME MODEL FOR DISTRIBUTION NETWORK MANAGEMENT

Patricia Gómez

Project Manager R&D&I Canal de Isabel II Gestión S.A. Madrid, Spain

It is a public company responsible for managing the whole water cycle in the region of **Madrid** in Spain

Inhabitants supplied

177

Municipalities

Canal

de Isabel II gestión

Criteria & methods for asset management

Improve efficiency

Minimize possible service disturbance events

Failure prediction model

BURST RECORDS (12,700 episodes) SCADA

Manoeuvres (74,000) + Monitoring (180 mill. data) + Bursts Records (420,000 events) SCADA

In-situ visits

Variables			Service connections	Distribution	Transport Mains	Elements
A	Geographic Information System (GIS)Geological, urban and regional Planning MapsBursts and leakages	Diameter Age Material Depth Location (burried, chambers) Type of soil Soil cover Traffic loads Failures' date and location Spatial failures distribution				
C	Field visits to bursts and laboratory tests	Temporal failures distribution Soil temperature Soil agresiviness Isolated conductive zones Pipe bedding condition Compaction of embedment soil Deficiencies on elements materials Field pressure registered External loads from traffic or walls Presence of roots Corrosion (internal and external)				
D	Calibrated hydraulic models of system perform Monitoring records (SCADA)	Max. Pressure Av. Pressure Min. Pressure Max. Velocity Av. Velocity Min. Velocity Min. Velocity Max. Pressure at sectors' entrance Min. pressure at sectors' entrance Pressure oscilation at sectors' entrance				
Canal	Operation and works records	Operational manoeuvres				

Evidences

- Bursts
- Element failures
- Equipment failures
- Leakage
- Corrosion. Loss of material (thickness)
- Loss of hydraulic section
 - Biofilm
 - Water quality affections

Models to select variables related to deterioration processes

Optimal model order analysis

Likelihood of failure for every element

Renewal strategy

Investments lead to previously selected elements

Likelihood of Impact in service failure provision to the end user

A renewal cost effective value for every element

- ✓ An asset lifetime model has been built and applied based on Madrid's network data
- ✓ Different models are proposed for service connections, distribution pipes, transport mains & elements
- ✓ Every model require diferent explanatory variables
- Models with more than 4 variables do not add predictability
 Age is not allways the most relevant factor
- The new renewal strategy proposed will provide an improvement on:
 - ✓ Investment efficiency for water companies
 ✓ Customers' satisfaction from reductions on service disturbance events.

