Potential impacts of climate change on groundwater resources in five small plains of a semi-arid region: uncertainty quantification using a nonparametric method

Atie Hosseinizadeha*, Heidar Zareiea, Ali M AkhondAlia, Hesam SeyedKabolib, Babak Farjadc

aDepartment of Hydrology, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan, Iran
bDepartment of Civil Engineering, Jundi Shapur University of Technology, Dezful, Khuzestan, Iran
cDepartment of Geomatics Engineering, University of Calgary, Calgary, AB, Canada
The greenhouse gases concentration is expected to rise during the present century by global economic development. The impact of rising greenhouse gases concentration on climate variables such as temperature and precipitation is inevitable. The trend of rising global warming will continue for decades even if the present greenhouse gases concentration decreases at the global scale.
There are several methods for simulating present and future climate variables, which the most reliable tools are three-dimensional general circulation models (GCMs). However, there are high level of uncertainties associated with these models that rises from the parameters and the model structure that can lead to errors in forecasting and planning. Minville et al., 2008 indicated that the largest uncertainty in climate impact studies is due to GCMs rather than downscaling methods, or hydrological models. Many other studies suggested using more than one GCM in climate impact studies.
Climate Change:

Introduction

Study area

Method

Results

Conclusion
The numerical models are one of the best methods of assessing the quantity and quality of groundwater. These models are difficult and time consuming. However, in the recent decades research that uses simulation models have been developed due to the improvement of high-speed computers. The groundwater models actually are a simplified sample of reality.
Introduction

Study area

Results

Conclusion

Method
Methodology Framework:

1. Projection recharge in future
2. Calibration and Validation
3. Rainfall in future
4. Downscaling
5. GCMs
6. Conceptual model
7. Numerical model
8. Climate change
9. Groundwater

Introduction
Study area
Method
Results
Conclusion
Groundwater Model

Numerical Model:

Introduction

Study area

Results

Method

Conclusion
Groundwater Model Calibration:

Method

Error Summary

- Mean Error: -0.001
- Mean Abs. Error: 0.649
- Root Mean Sq. Error: 0.709

Results
Groundwater model

Calibration:

Error vs. Time Step

- Mean error
- Mean absolute error
- Root mean squared error

<table>
<thead>
<tr>
<th>Year</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Method
Groundwater model

Validation:
Climate Change:

<table>
<thead>
<tr>
<th>Number</th>
<th>Model</th>
<th>Emission scenarios</th>
<th>Organizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CGCM3T47</td>
<td>A1B, A2, B1</td>
<td>Canadian Centre for Climate Modelling and Analysis (CCCma, Canada)</td>
</tr>
<tr>
<td>2</td>
<td>CNRMCM3</td>
<td>A1B, A2, B1</td>
<td>Center National Weather Research (CNRM, France)</td>
</tr>
<tr>
<td>3</td>
<td>CSIROMk3.5</td>
<td>A1B, A2, B1</td>
<td>Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia)</td>
</tr>
<tr>
<td>4</td>
<td>ECHAM5</td>
<td>A1B, A2, B1</td>
<td>Max Planck Institute for Meteorology (Germany)</td>
</tr>
<tr>
<td>5</td>
<td>ECHO-G</td>
<td>A1B, A2, B1</td>
<td>Meteorological Institute of the University of Bonn (Germany)</td>
</tr>
<tr>
<td>6</td>
<td>FGOALS-g1</td>
<td>A1B, B1</td>
<td>Institute of Atmospheric Physics (IAP, China)</td>
</tr>
<tr>
<td>7</td>
<td>GFDMCL2.1</td>
<td>A1B, A2, B1</td>
<td>Geophysical Fluid Dynamics Laboratory (GFDL, USA)</td>
</tr>
<tr>
<td>8</td>
<td>GISS-ER</td>
<td>A1B, A2, B1</td>
<td>Goddard Institute for Space Studies (GISS, USA)</td>
</tr>
<tr>
<td>9</td>
<td>HadCM3</td>
<td>A1B, A2, B1</td>
<td>Hadley Centre (United Kingdom)</td>
</tr>
<tr>
<td>10</td>
<td>HadGEM1</td>
<td>A1B, A2</td>
<td>Hadley Centre (United Kingdom)</td>
</tr>
<tr>
<td>11</td>
<td>INGV-SXG</td>
<td>A1B, A2</td>
<td>Istituto Nazionale di Geofisica e Vulcanologia (NIGV, Italy)</td>
</tr>
<tr>
<td>12</td>
<td>INMCM3</td>
<td>A1B, A2, B1</td>
<td>Institute of Numerical Mathematics (INM, Russia)</td>
</tr>
<tr>
<td>13</td>
<td>MIROC3.2</td>
<td>A1B, A2, B1</td>
<td>National Institute for Environmental Studies (NIES, Japan)</td>
</tr>
<tr>
<td>14</td>
<td>MRI CGCM2.3</td>
<td>A1B, A2, B1</td>
<td>Meteorological Research Institute, Japan Meteorological Agency</td>
</tr>
<tr>
<td>15</td>
<td>NCARPCM</td>
<td>A1B, A2, B1</td>
<td>National Center for Atmospheric Research (NCAR, USA)</td>
</tr>
</tbody>
</table>
Climate Change:

LARS-WG

Rainfall and temperature in 2020-2044

GCMs

Introduction Study area Method Results Conclusion
This method estimates a PDF function for climate variables obtained from GCMs output, such as precipitation and temperature. In the non-parametric method, the density function (f) is unknown and should be determined using statistical analysis. The Kernel estimator with center K which is a symmetric density function such as Gaussian density.
Groundwater Balance:

Outflow from the aquifer

Percentage

ET Well GHB River ET Well GHB River ET Well GHB River ET Well GHB River ET Well GHB River

Lor Sabili Western Dez Eastern Dez Deymche

Results

Introduction Study area Method Conclusion
Interactions of groundwater and surface water:

Introduction

Study area

Results

Conclusion
Climate Change Impact on Temperature:

Average temperature changes in the future compared to the baseline
Climate change impact on precipitation:
Climate change impact on groundwater:

Introduction

Study area

Method

Results

Conclusion
Assessment of Uncertainty:

Introduction

Study area

Method

Results

Conclusion
Results revealed that the largest increase in temperature occurs in May while the largest decline occurs in January and October. In other words, the rise in temperature is more pronounced in the wet season compared to the dry season. There is a shift in precipitation from fall to the late summer. The largest change in precipitation occurs in August.

The pattern of change in recharge follows the precipitation pattern of change. There is a decrease in recharge in April, May, June, and October. The largest of change in recharge occurs by %40 in the late summer whereas the most pronounced changes occurs in the Lore plain.

The largest uncertainty in simulation of recharge under GCM scenarios was determined in August, September, and December. The range of changes in recharge were determined between -%10 and +%13 in the Sabili plain, -%6 and +%10 in the Deymche plain, -%4 and +%10 in the western-Dez plain, and -%6 and +%26 in the eastern-Dez plain. The largest decline in groundwater level occurs in the Sabili plain in September.