

DECENTRALIZED AND ONSITE WASTEWATER MANAGEMENT ISSUES OF SMALL COMMUNITIES IN THE JOURDAN RIVER WATERSHED, MISSISSIPPI

Bailey Rainey, Veera Gnaneswar Gude, James L Martin, Dennis D Truax, Benjamin S Magbanua

OVERVIEW

- Area of Interest Jourdan River Watershed
- Nutrient issues in Mississippi's coastal waters and their implications
- What is causing these issues?
- Septic systems conventional and alternative
- Identify decentralized communities in the Jourdan River watershed

JOURDAN RIVER WATERSHED

- Discharges into Bay St. Louis
- Falls within Hancock County, MS
- Classified as Recreational Waters
- Part of the Citronelle Aquifer

COASTAL RECREATIONAL WATERS

MDEQ State of Mississippi Water Quality Criteria for Intrastate, Interstate, and Coastal Waters

- EPA Standards
 - TDS = I500 mg/L (freshwater streams)
 - Iron = I mg/L
 - pH = 6.5 9.0
 - Nitrate = 10 mg/L

CITRONELLE AQUIFER

NUTRIENT ISSUES IN THE COASTAL WATERS Total Dissolved Solids

- Standard = 1500 mg/L
- Range = 12 mg/L to 1690 mg/L
- Median value = 50 mg/L

NUTRIENT ISSUES IN THE COASTAL WATERS Iron

- Standard = Img/L
- Range = <0.010 mg/L to 2.5 mg/L</p>
- Median value = 0.020 mg/L
- **Determine source**

NUTRIENT ISSUES IN THE COASTAL WATERS PH

- Standard = 6.5 9.0
- The pH levels in the Citronelle Aquifer rarely exceed 5.5.
- Range = 4.1 to 10.3
- Median value = 5.4
- **Determine source/reprocussions**

NUTRIENT ISSUES IN THE COASTAL WATERS Nitrate

- Standard = 10 mg/L
- Range = 0.01 mg/L to 37 mg/L
- Median value = 1.5 mg/L
- Mostly coming from failing onsite systems
- Could contribute to hypoxia in the Gulf

ON-SITE TREATMENT UNITS WITHIN THE GULF REGION

County	No. of Housing Units	No. of On-Site Treatment Units	Estimated Failing Units	Percentage of Total Failing Units	Estimated Flow from Failing Units (MGD)
George	7649	6597	990	2.67%	0.196
Hancock	22363	12020	7212	19.45%	1.428
Harrison	83631	24019	9608	25.91%	1.902
Jackson	54035	22664	11332	30.56%	2.244
Pearl River	21457	15953	6381	17.21%	1.263
Stone	5445	3899	1560	4.21%	0.309

WHY ARE THEY FAILING?

- Improper maintenance
- Unsuitable soil
 - "Approximately two-thirds of all land area in the U.S. is estimated to be unsuitable for the installation of septic systems."

WHAT DOES THIS MEAN?

- Untreated, or improperly treated, sewage is being discharged into groundwater and streams.
 - Water quality issues
 - Health issues

ON-SITE TREATMENT SYSTEMS

- Conventional Septic System
 - Gravity System
 - Pressure Distribution System
- Alternative Septic Systems
 - Aerobic Treatment Systems
 - Intermittent Sand Filter Systems
 - Recirculating Sand Filter Systems

CONVENTIONAL SEPTIC SYSTEM with Absorption Field

- Typical treatment levels
 - BOD5 = 10 mg/L
 - TSS = 10 mg/L
 - Fecal coliforms = usually less than 200 per 100mL
 - Doesn't allow for nitrogen removal without additional treatment
- Cost
 - System and installation: \$1,500 \$4,000
 - Operation and maintenance: \$250 \$550 per year

AEROBIC TREATMENT SYSTEMS****

- Mirror many of the steps and activities performed by municipal sewage plants
- Similar to a conventional septic treatment system, but aerobic systems inject oxygen into the tank
- Oxygen increases bacterial growth and consumption of waste
- Most systems include a pretreatment tank and a final treatment tank where chlorine is used instead of sending the effluent to a drainfield for the soil to filter.
- After the final treatment tank, the effluent can acceptably be directly discharged via sprinklers over the drainfield.
 - Good option for landowners who don't want to clear trees
 - Good alternative for homeowners on lots close to a body of water that might be polluted through the use of a conventional septic system with a drainfield

SAND FILTER SYSTEMS

Intermittent Sand Filters

- Typical treatment levels
 - $BOD_5 = 95\%$ removal
 - TSS = 85% removal
 - Nitrification of 80%+ of the applied ammonia

Recirculating Sand Filters

- Typical treatment levels
 - BOD₅ = 95% removal
 - TSS = 95% removal
 - Almost complete nitrification is achieved
 - Denitrification has also been shown to occur
 - "Depending on modifications in design and operation, 50% or more of the applied nitrogen can be removed."

SAND FILTER SYSTEMS

Intermittent Sand Filters

	ltem	Cost (\$)
	Capital Costs	
 After initial costs, 	Construction costs, 1,500-gallon single compartment septic/pump tank @ 57 cents/gallon	850
yearly cost = \$150 + Power	ISF complete equipment package (includes dual simplex panel, pump pkg., tank risers, lids, liner, lateral kit, orifice shields, etc.)	3,200
	Non-component costs	750
	Engineering (includes soils evaluation, siting, design submittal, and construction inspections)	2,000
	Contingencies (includes permit fees)	1,000
	Land	May vary
	Total Capital Costs	10,800
	Annual O&M Costs	
	Labor @ \$65/hr. (2 hrs./yr.)	130/yr.
	Power @10 cents/kWh	May vary
	Sludge disposal	*25/yr.

Recirculating Sand Filters

		Cost (\$)	
	Item	Sand ¹	Black Beauty Sand ²
 After initial costs, 	Capital Costs		
yearly cost	Construction costs		
yearly cost	Pretreatment	May vary	May vary
= \$300 + Power	Recirculation 10 tank and pumping system		9,000
	Sand filter	10,000ª	43,100
	Non-component costs	May vary	May vary
	Engineering	3,000	7,800
	Contingencies	3,000	7,800
	Land	May vary	May vary
	Total Capital Costs	26,000	67,700
	Annual O&M Costs		
	Labor	20/hr	20/hr
	Power	May vary	May vary
	Sludge disposal @ 10 cents/gal	50/yr⁵	50/yr⁵

CONTINUING THE STUDY

- What is causing the failures of these on-site systems?
- We are looking more into this.
- Find specific small communities with failing systems contributing to the issues in the Jourdan River Watershed
- Help them come up with unique solutions
- Find data specific to the Jourdan River Watershed
- Can you help us?