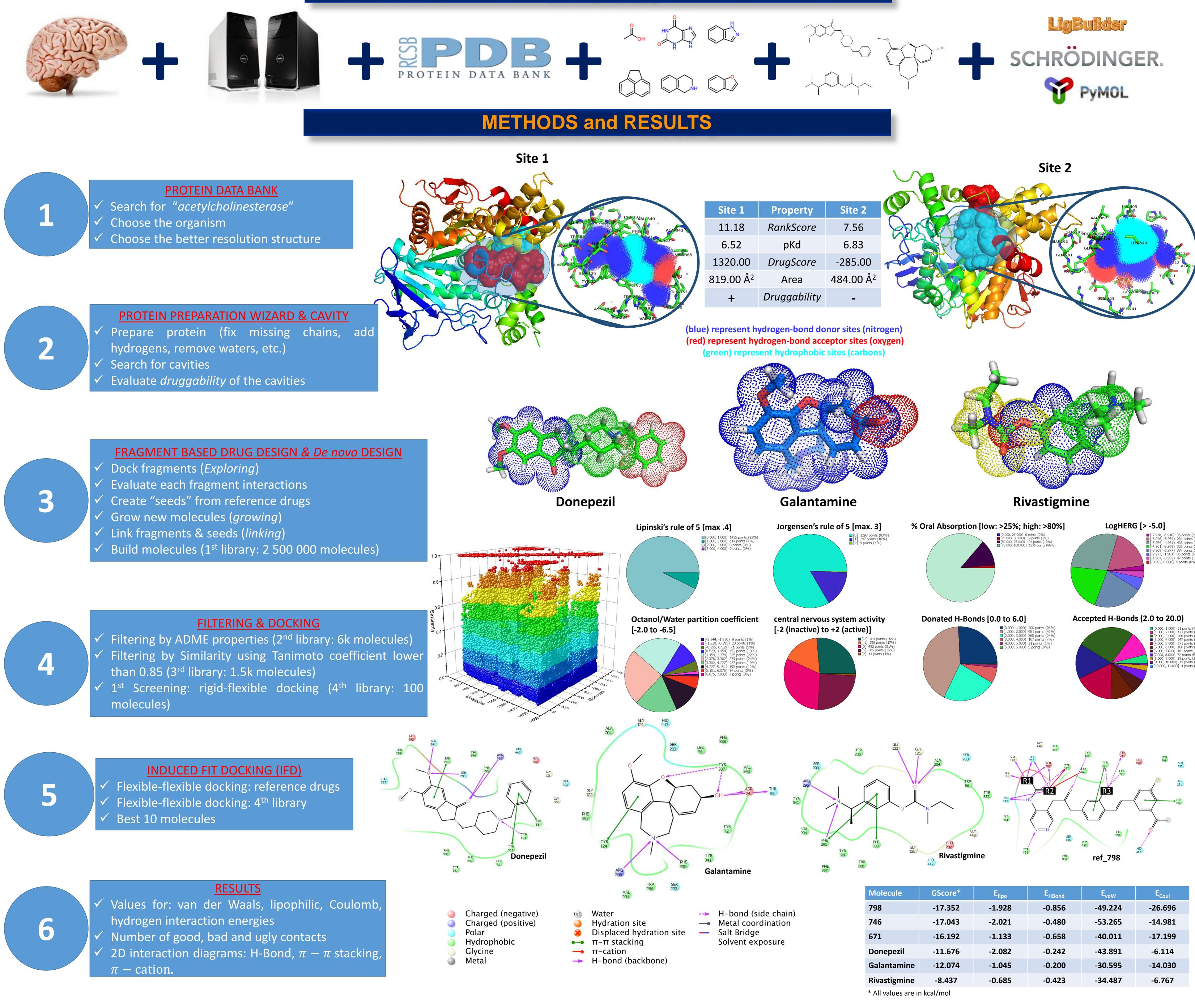


In silico development of new acetylcholinesterase inhibitors



Ana L. Pascoini[†], Leonardo B. Federico^{*}, Ana L. F. Arêa[†], Barbara A. Verde[†], Ihosvany Camps[†] †Institute of Exact Sciences, Federal University of Alfenas, Brazil

*School of Pharmaceutical Sciences of Ribeirão Preto. University of São Paulo. Brazil

ABSTRACT

In this work we made use of the fragment-based drug design (FBDD) and de novo design to obtain more powerful acetylcholinesterase (AChe) inhibitors. The acetylcholinesterase is associated to the Alzheimer's Disease (AD). It was found that the cholinergic pathways in the cerebral cortex is compromised in AD and the accompanying cholinergic deficiency contributes to the cognitive deterioration of AD patients. In the FBDD approach, fragments are docked into the active site of the protein. As fragments are molecular groups with low number of atoms, it is possible to study they interaction with localized amino acids. Once the interactions are measured, the fragments are organized by affinity and then linked between them to form new molecules with high degree of interaction with the active site. In the other approach, we used the de novo design technique starting from reference drugs used in the AD treatment. These drugs were break into fragments (seeds). In the growing strategy, fragments were add to each seed growing new molecules. In the linking strategy, two or more separated seeds are linked with different fragments. Both strategies produced a library of more than 2M compounds. This library was filtered using ADME properties. The resulting library with around 6k compound was filtered again. In this case, structures with Tanimoto coefficient greater than 0.85 were discarded. The final library with 1.5k compounds was submitted to docking studies. As a result, 10 compounds with better interaction energy than the reference drugs were obtained.

CAVITY: Curr. Pharm. Des. 19, 2326 (2013); Y. Yuan, J. Pei e L. Lai

- LigBuilder: J. Chem. Inf. Model. **51**, 1083 (2011); Y. Yuan, J. Pei e L. Lai
- Similarity: J. Med. Chem. 57, 3186 (2014); G. Maggiora, M. Vogt, D. Stumpfe e J. Bajorath
- ADME: QikProp, version 3.2, Schrödinger, LLC, New York, NY, 2009.
- Docking: J. Med. Chem. 49, 6177 (2006); R.A. Friesner, et al.
- Induced Fit Docking: J. Med. Chem. 49, 534 (2006); W. Sherman, et al.

CONCLUSIONS

- The protein cavities were scanned and classified.
- A first library with 2 500 000 molecules was obtained.
- A second library with ~6000 molecules was obtained from 1st library after filtering by ADME properties.
- A third library with ~1500 molecules was obtain filtering the 2nd library using similarity.
- Rigid-flexible docking studies were carry with the 3rd library. The best 100 molecules were used in flexible-flexible docking together with the reference drugs.

ACKNOWLEDGMENT

