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Summary. We synthesized a new hybrid organo-inorganic 
polyoxometalate from Na2WO4 and di-sodium salt of para-
nitrophenyl ester of phosphoric acid, Na2C6H4NO2@[PW12O40]. 
Photochemical activity of the compound towards mandelic acid 
and isopropyl alcohol was studied. It was shown that the 
polyoxometalate synthesized behaves itself as a powerful 
photooxidazing agent and/or a catalyst of the photochemical 
oxidation of the said H-atom donors by nitrocompound in the 
presence of oxygen. 
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Hybrid organo-inorganic compounds have gained a great piece of interest recently [1]. 
The interest is reasoned by the unique collection of different chemical properties in the case of 
hybrid polyoxometalates (HPOM) [2]. HPOM has a real nanomolecular nature that gives a 
possibility to obtained a combination of controllable properties such as size, shape, charge, redox 
potentials, solubility and so on [3] in the same material. 
 

Our aim was to synthesize HPOM containing both [PW12O40]  and nitro aromatic 
fragments using hydrothermal procedure. 
 

Method of the HPOM synthesis 
 

1.35 g of Na2WO4·6H2O was dissolved in 10 ml of distilled water. 67.5 mg of para-

nitrophenyl ester of phosphoric acid (RNO2) was added to the solution. The reaction mixture was 

stirred up to dissolution of solids. After that 10 ml of concentrated H2SO4 was added drop wise 

into the constantly stirring reaction mixture. After some time a precipitate began to form. The 

reaction mixture was heated up to 50 °C for 3 min. The precipitate began to form more 

intensively.  

The solution was kept in dark for 3 days at room temperature. The precipitate became 

dense and its amount increased. Its color became grey-green. The precipitate was filtered and 

dried in dark at room temperature for a day. After that the product was purified with 

crystallization from ethyl alcohol. The alcohol was evaporated, and the newly formed precipitate 

was washed with water and dried. Recrystallization procedure was repeated some times. There 



were some problem with purification of other hybrid organo-inorganic compounds (the same 

situation was observed during phenylimido functionalization of α-[PW12O40]3-[9]).   

 
IR identification of the synthesized HPOM 

 
IR- Spectra of the synthesized HPOM in the KBr matrices were measured (see Fig.1). 

UV-spectrophotometer (Prestige 21, Shimadzu) was used. Table 1 contains some results of our 

interpretation of the obtained data. 
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Fig.1 IR- Spectrum of the synthesized HPOM in the KBr matrices 

 
Table 1  IR- Spectra of the synthesized HPOM in the KBr matrices 

Wave number,cm-1 Intensity1) Interpretation2) Literature/ comparison with the 

starting compounds 
3443.45 S., B. νas((OH) 3444.89 in RNO2 

3440.55 in Na2WO4*6H2O 

2932.79 M. νas(CH) [7]/ 2939.06 in RNO2 
2862.87 M. νas(CH) [7]/ 2939.06 in RNO2 

1635.65 M. Vibrations of aromatic 1627.93 in RNO2 



ring 

1589.84 S. Vibrations of aromatic 

ring 

1562.35 in RNO2 

1489.09 S. νas((NO2) 1523.29 in RNO2 

1463.03 S., Shp.   

1340.50 S. νs((NO2) 1343.43 in RNO2 

1310.64 S.   

1174.66 M.  1176.59 in RNO2 

1141.38 M.  1132.22 in Na2WO4*6H2O 

1118.72 S.   

1059.81 S. νas(PO), KS  [5] 

989.97 M. Stretching, WO, KS [5], [6] 

990.45 M. νas(WO), KS [5] 

964.57 M. νas(WO), KS [5] 

932.78 M. νas(WO), KS [6] 

816.34 M. Stretching, WO, KS [5] 

758.99 S.  752.73 in Na2WO4*6H2O 

704.99 S.   

618.19 S.   

576.72 S. Stretching, WO, KS [5] 

573.34 M.   

522.76 M. Stretching, WO, KS [5] 

472.16 M. Stretching, WO, KS [5] 
1) S. – Strong, B. – Broadened, M. – Mediate, Shp. – Sharp 
2) as – asymmetrical stretching vibration; KS – Keggin structure. 

To make the interpretation easier we have measured IR-spectra of the starting materials (see Fig. 

2 and 3). 
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Fig.2 IR- Spectrum of  Na2WO4*6H2O in the KBr matrices. 
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Fig.3 IR- Spectrum of para- nitrophenylic ester of phosphoricacid in 

the KBr matrices. 



 

It is worth to note that there are vibrations at 1059.81 (stretching vibration of P-O 

bond), 989.97, 990.45, 964.57, 932.78, 816.34, 576.72, 522.76 and 472.16 cm-1 being valence 

vibrations of the W-O bonds (in different crystallographic positions the vibrations differ) that are 

characteristic for the Keggin-type structure of   H3[PW12O40] fragments. In addition, one can 

observe some vibrations at 1059.81 cm-1 that are typical for P-O bonds. They are identified as the 

PО4
3- tetrahedral vibrations. The aromatic C-H bond vibrations at 2932.79 and 2862.87 cm-1 and 

the aromatic ring vibrations at 1589.84 cm-1 can be also found. And at last it is useful to note two 

vibrations at 1489.09 and 1340.50 cm-1. They could be attributed to asymmetrical and 

symmetrical vibrations of the nitro groups.  

Thus, it should be note that the obtained HPOM contains vibrations of bonds from 

fragments of its main components and the IR spectra observed give us a possibility to assign the 

HPOM to the Keggin type compound.  

To enforce the statement we used X-ray fluorescence analysis (ERD-900 X-ray 

fluorescence spectrometer from Shimadzu) to determine amounts of main atoms containing in 

the product. The product contained 8.95 % of P and 64.03 % of W. 

 

Photochemical reactions of the HPOM 
 

To demonstrate oxidative potential of the HPOM we have used it to produce 

photochemical oxidation of compounds containing active hydrogen atoms such as isopropyl 

alcohol and mandelic acid. 

Fig 4 shows changes in UV spectra of the reaction mixture consisting of HPOM (1 

mmole/l) and i-PrOH under UV irradiation (with intensity of 22.5 mW/cm2) in the presence of 

air.  

 



 
Fig. 4 Changes in UV spectra of the reaction mixture consisting 
of HPOM (1 mmole/l) and i-PrOH under UV irradiation (with 
intensity of 22.5 mW/cm2) in the presence of air. 

 
Much more pronounce effect was observed in the course of the UV irradiation of 

mandelic acid under UV irradiation (with intensity of 22.5 mW/cm2) in the presence of air 
(Fig.5). 
 

 



Fig. 5 Changes in UV spectra of the reaction mixture 
consisting of HPOM (1 mmole/l) and mandelic sodium (1 
mmole/l) in acetonitrile under UV irradiation (with intensity of 
22.5 mW/cm2) in the presence of air. 

 
Discussion 

 
Nitro aromatic compounds transfer into the excited singlet state under UV 

irradiation. The excited singlet state turns into the triplet state due to intersystem 

crossing (isc) [10]. The transformation is catalyzed, as rule, with compounds 

containing heavy atoms [13]. The role of the atoms can successfully play heavy 

atoms contained in HPOM.  

3{RNO2@POM}*h
RNO2@POM 1{RNO2@POM}*

ISC

 
The triplet HPOM containing nitro groups are very active and could easily 

abstract hydrogen atom from isopropyl alcohol giving two radical products: the C-

centered radical formed from isopropyl alcohol and the radical derived from 

HPOM having added hydrogen atom at oxygen atom of the nitro aromatic 

moieties. 
 

3{RNO2@POM}*   +     RNO2H@POM      +   OH

CH3

CH3
OH

CH3

CH3

 
 

Afterwards the radical from HPOM decomposes to nitrosocompound and  

hydroxyl radical. 

  RNO2H@POM   RNO@POM   +     OH
 

Hydroxyl radicals could recombine with the C-centered radical that at the 

end should give acetone[11]. It was a final product that was detected in the 

corresponding experiments. Hydroxyl radical oxidation of alcohols is widely 

known [11]. 

 



OH

CH3

CH3 +    OH CH3 CH3

OH

OH
O

CH3

CH3

-H2O

 
It should be noted that HPOM containing nitroso group could in its turn be 

oxidized into nitro aromatics due to possible activation of molecular oxygen with 

polyoxometalate fragment. 

 

RNO@POM  +  O2  →  RNO@POM•O2  + 2H+→ RNO2@POM  +  H2O 

 

The last reaction occurs because of the POM ability to undergo redox 

reactions [1,3]. 
 

Photochemical oxidative decarboxylation of mandelic acid and its 

derivatives in the presence of HPOM proceeds in the same manner as in the case of 

the isopropyl alcohol – HPOM system. 

3{RNO2@POM}*h
RNO2@POM 1{RNO2@POM}*

ISC

 
 

HPOM in the triplet state abstracts mobile hydrogen atoms from the 

alcoholic carbon atom from the mandalic acid molecule to give the C-centered 

radical and an adduct of hydrogen atom with nitro aromatic fragment of HPOM. 

3{RNO2@POM}*   +   

O

OH

OH

  RNO2H@POM      +   

O

OH

OH

 
 



The hydrated HPOM could eliminate hydroxyl radicals to turn into nitroso-

containing POM 

  RNO2H@POM          RNO@POM   +    OH        
 

The C-centered radical in its turn could recombine with hydroxyl radical, 

eliminate water molecule and transforms into phenylglyoxalic acid. The said acid 

eliminates CO2 giving benzaldehyde as the main product. The analogous 

mechanism was proposed in [12]. 
 

O

OH

OH +    OH

O

OH
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OH

O

OH
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In the presence of molecular oxygen HPOM containing nitrosocompound 

could oxidized into nitrocompound. 

 

RNO@POM  +  O2  →  RNO@POM•O2  + 2H+→ RNO2@POM  +  H2O 

 

The reaction schemes proposed give us a possibility to rationalize our 

observations. 
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