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Abstract: As classic methods for handling continuous action space problem for continuous action space 

problem in RL, the actor-critic (AC) algorithm and its variants still fail to be sample efficiency. Therefore, we 

propose a method based on learning two linear models for planning. The two linear models refers to state-

based piecewise model and action-based piecewise model, which are determined by the divisions for the state 

and action space, respectively. Through division, the models are learned more accurately. To accelerate the 

convergence, the sample near the goal is saved and used to learn the model, the value and the policy to balance 

the distribution of the samples. On two classic RL benchmarks with continuous MDPs, the proposed method 

shows the ability of learning an optimal policy by combing both models, and it also outperforms the 

representative methods in terms of convergence rate and sample efficiency. 

 

                        

    
Figure 1. The Pole balancing problem 
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Figure 2. Comparisons of different piecewise models  

 
Figure 3. Comparisons of the learned policy and optimal value function  

    
Figure 4. Comparisons of the balancing steps 
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(a) Final policy obtained after the training is over

 

 

(b) Final value function obtained after the training is over
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Figure 5. Comparisons of the sample efficiency  

 

Conclusions. 

This paper proposes an improved AC algorithm based on two piecewise models, the state-based 

piecewise model and the action-based piecewise model, to improve the sample efficiency and convergence 

rate for the problems with continuous state and action spaces. The empirical results show that the two models 

can cooperate well, additionally, the performance becomes more stable after introducing two piecewise 

models. In comparison to the discrete action algorithms Sarsa (λ) and linear Dyna as well as the continuous 

action algorithms SAC and MLAC, AC-DPML behaves well not only in convergence rate but also in sample 

efficiency. The performances of the discrete action algorithms Sarsa(λ) and linear Dyna do not look as well 

as those of the compared continuous algorithms. The comparison results between the method with model 

learning and the one without model learning, e.g., the discrete methods linear Dyna versus Sarsa(λ) or the 

continuous methods MLAC versus SAC, seem to demonstrate that model learning can improve the 

performance to a certain extent. 

Since the introduction of the piecewise models can really improve the model accuracy, the sample 

efficiency and the convergence from the experimental results, it would be interesting to apply the two kinds 

of models to more complex domains, e.g., the inputs are figures or videos, so as to improve the performances 

for these domains. 
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