Predicative Competence in a Digitalised Society†

Rodolfo A. Fiorini 1,*

1 Politecnico di Milano University; rodolfo.fiorini@polimi.it
* Correspondence: fiorini.polimi@gmail.com; Tel.: +39-022-399-3350
† Presented at the IS4SI 2017 Summit DIGITALISATION FOR A SUSTAINABLE SOCIETY, Gothenburg, Sweden, 12-16 June 2017.

Published: 8 June 2017

Abstract: In the current digitalised society, communication level requires high predicative competence and concept clarity to avoid predicative fallacies and to manage the contemporary information overload successfully. In this paper we review the fundamental conceptual and operative requirements to achieve this goal. This paper presents a relevant contribute to model and simulation, offering an example of new forms of evolutive inter- and trans-disciplinarity post-Bertalanffy modeling.

Keywords: predicative competence; universe of discourse; narrative; conceptual clarity; squares of oppositions; human predicative rationality; EPM; digitalised society; CICT.

1. Introduction

According to traditional theories, brain researchers estimate that the human mind takes in 11 million pieces (tokens) of information per second through our five senses but is able to be consciously aware of only 40 of them [1, 2, 3]. So our neurointerfaces and our brain have to filter to the extreme. To better clarify the computational paradigm, we can refer the following principle: “Animals and humans use their finite brains to comprehend and adapt to an infinitely complex environment” [4]. We are constantly reconstructing the world’s essential and superficial characteristics. This is the outcome of the on-going evolution of our relationships in a world full of surprises and challenges [5] related to deeper characteristics. In today world, information plays a much broader role, in which what matter is meaning rather than quantity. The classical emphasis posed by natural language processing (NLP) technologies on linguistic representation plays a crucial role in big data scenarios. They try to account for different semantic dimensions (e.g. lexical, grammatical or encyclopedic) during the training for an individual task. Certainly, attempts to introduce semantics into information theory have made some progress, but still fall short of being able to deal with problems in which information is described in full natural language [6], [7](p.1). In the current digitalised society, communication level requires high predicative competence and concept clarity to avoid predicative fallacies and to manage the contemporary information overload successfully. In this paper we review the fundamental conceptual and operative requirements to achieve this goal. This paper presents a relevant contribute to models and simulations, offering an example of new forms of evolutive inter- and trans-disciplinarity post-Bertalanffy modeling.

2. Universe of Discourse

In every discourse, whether of the mind conversing with its own thoughts, or of the individual in his intercourse with others, there is an assumed or expressed limit within which the subjects of its operation are confined. Now, whatever may be the extent of the field within which all the objects of our discourse are found, that field may properly be termed the “universe of discourse”. This concept, probably created by Irish mathematician, educator, philosopher and logician George Boole in 1847, played a crucial role in his philosophy of logic, especially in his stunning principle of "wholistic
reference” [8] (p.941), [9]. The term "universe of discourse" generally refers to the collection of symbolic objects being managed and discussed in a specific discourse. In current model-theoretical semantics, a universe of discourse is the set of symbolic entities that a model is based on. Furthermore, this universe of discourse is in the strictest sense the ultimate subject of the discourse and human ability to use logic, to integrate the evidence of our senses in a noncontradictory way, is part of our rational faculty, the very faculty that makes us human. Obviously, we also have the capacity to be illogical, but that is because our rational faculty also entails volition, the power to choose to think or not to think.

3. Predicative Competence

According to Swiss clinical psychologist Jean Piaget, human adults normally know how to use properly classical propositional logic. Piaget also held that the integration of algebraic composition and relational ordering in formal logic is realized via the mathematical Klein group structure [10],[11]. The Klein group structure Piaget used, can be used to help us understand better what happens in spontaneous human reasoning and in the production of fallacies. In fact, in mathematics, the Klein four-group or "Vierergruppe" is the smallest non-cyclic group, and every non-cyclic group of order 4 is isomorphic to the Klein four-group. The cyclic group of order 4 and the Klein four-group are therefore, up to isomorphism, the only groups of order 4. Both are abelian groups in mathematics. Klein four-group applied to binary connectives is such that a given connective is associated first with itself (in an identical (I) transformation) and then with its algebraic complement (its inverse (N) transformation), also with its order opposite (its reciprocal (R) transformation) and finally, with the combination of its N and R transformations (that Piaget calls its "correlative" or C transformation) [10] (Ch.17). This correlative corresponds to what logicians usually call the "dual" (D) transformation [11]. The Klein group structure generates squares of opposition (SOO), and an important component of human rationality resides in the diagram of the SOO, as formal articulations of logical dependence between connectives. SOO are considered as important basic components of logical competence and of human predicative rationality [12]. But the formal rationality provided by the SOO is not spontaneous and therefore, should not be easy to learn for adults. This is the main reason why we need reliable and effective training tools to achieve full propositional logic proficiency in decision making, like the elementary pragmatic model (EPM) [13].

4. Evolutive Elementary Pragmatic Model (EPM)

The relational "Model of the Rational Mind" (EPM for short) allows the adoption of a different perspective from that of traditional psychology. In Italy, EPM was introduced in 1979 by De Giacom and Silvestri [14], and a complete description of first clinical applications was then made in the course of the 1980s and 1990s [15]. In the past decades, EPM has shown to be a highly operative and versatile tool and new application areas have been continually envisaged in many different disciplines with successful result, from engineering to artistic application. A detailed description is reported in De Giacom and Fiorini [13]. By an abstract point of view, EPM can be seen as the logic description of the fundamental interactions of two Klein groups. In other words, EPM can model all the elementary narrative and rhetoric articulations between two rational, interacting subjects. Currently, the notion of reasoning or conscious reason may be interpreted in terms of the reasoning process itself being itself explicitly modeled by the reasoning agent [16]. In this way, we arrive at the core understanding of "the difference that makes the difference" [17] (pp.457-9). Such an approach, developed initially by English anthropologist and social scientist Gregory Bateson, is advocated by De Giacom and Fiorini [13], and Wheatley [18] for management and leadership. EPM extension as "Evolutive Elementary Pragmatic Model" EPM [19] presents a relevant contribute to models and simulations offering an example of new forms of evolutive inter- and trans-disciplinarity post-Bertalanffy system modeling. Examples are presented and discussed.

Conflicts of Interest: The authors declare no conflict of interest.
References


© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)