

Proceedings 2017, 1, 3 www.mdpi.com/journal/proceedings

Proceedings

Cognitive Distributed Computing and its Impact on

Information Technology (IT) as we know it †

Rao Mikkilineni 1,*

1 C3DNA; rao@c3dna.com

* Correspondence: rao@c3dna.com; Tel.: +1-408-406-7639

† Presented at the IS4SI 2017 Summit DIGITALISATION FOR A SUSTAINABLE SOCIETY, Gothenburg,

Sweden, 12-16 June 2017.

Published: 9 June 2017

Abstract: As the scale of computations become large and as both people and machines demand

communication, collaboration and commerce at the speed of light, rapid fluctuations in the demand

for computing performance and fluctuations in available resource pools, both make it necessary to

respond fast and readjust the computation structures and associated resources so as to not disrupt

the user experience or the service transaction. Current Information Technologies from their

memory-starved, server-centric, low-bandwidth origins from von Neumann's stored program

control implementation of the Turing Machine are evolving with new architectures to meet the

demand for scale and speed. In this paper we discuss the evolution of current IT to cognitive IT,

where computing processes become self-aware of their resource requirements in real-time and seek

to adjust them from a global knowledge of available resource pools and their provisioning

processes. This is transforming the current state of the IT as we know it to a cognitive IT.

Keywords: Distributed Computing; Cloud Computing; DIME Computing Model; Information

Technologies; Cognitive Computing;

1. Introduction

“Systems manage themselves according to an administrator’s goals. New components integrate

as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction,

but elements of the grand challenge to create self-managing computing systems.” This vision

published in January 2003 [1] is I believe finally around the corner now in 2017.

It took almost a decade and a half since Paul Horn in 2001 coined the word autonomic computing

to describe a solution to the ever-growing complexity crisis that, still today, threatens to thwart IT’s

future growth. In the original vision, systems manage themselves in accordance with high-level

behavioral specifications from administrators — much as our autonomic nervous system

automatically increases our heart and respiratory rates when we exercise. There were four properties

identified to recognize autonomic computing - self-provisioning, self-optimizing, self-protecting and

self-healing. Ironically, while autonomic systems have proliferated using the autonomic computing

model that introduces sensors and controllers into an element and use global knowledge for

managing it [2], autonomic computing has not helped to reduce the IT management complexity to

date. Figure 1 shows the current state of the art where autonomic computing has been successfully

applied to configure, monitor and control business processes and various devices, but managing the

resources to meet the fluctuations in computing fuel requirements has fallen short.

Proceedings 2017, 1, 3 2 of 5

Figure 1: Current State of the Art IT with myriad infrastructure, platforms and orchestrators to

support non-functional requirements

Globally distributed applications, by their very nature, consist of hardware and software

components with spatial structures executing temporal evolution of computations that are designed

to deliver an intent. The intent is captured in the functional requirements in the form of an algorithm

that executes with the help of computing, storage and network resources. Current computing

paradigm evolved from a decades-old von Neumann's stored program implementation of the

Universal Turing machine in which the algorithm is executed using a read --> compute (change the

state) --> write cycle, using computing resources consisting of CPU and memory. The efficiency of

the algorithm execution depends both on the nature of the algorithm and the resources available to

execute it. The availability, performance, security and other attributes of the application are defined

in the non-functional requirements and are managed by external agents to match the application need

and resource availability. If adequate resources are not available at any point of time, the application

non-functional requirements suffer.

 The plan for implementing functional requirements is detailed in the system design and

implemented as software. The plan for implementing non-functional requirements is detailed in the

system deployment and operations architecture. These requirements include availability, reliability,

performance, security, scalability, compliance and efficiency at run-time. Traditional IT has

developed various efficiencies in designing the functional requirements and implementing them with

well-defined processes that span from requirements definition to software implementation, quality

assurance and software deployment in production. On the other hand, providing the infrastructure

to develop and deploy the software has evolved into a plethora of infrastructure management

systems with ever increasing complexity as shown on the left hand side of the picture.

2. Need for a New Architecture for Implementing Workflow Non-functional Requirements

It is important to note that current state of the art approaches lock the application in an operating

system or a container and provision and orchestrate the container or the virtual machine to address

the non-functional requirements. In order to address fluctuations, the infrastructure has to be

reconfigured which requires complex plethora of server, storage and network infrastructure

reconfiguration in distributed environments. The resulting complexity and tool fatigue is forcing

enterprises to look for solutions that decouple application from the infrastructure and infuse the

ability in the application to be provisioned and orchestrated on any infrastructure independent of

infrastructure management systems except for provisioning. What the enterprise line of business

owners are looking for is end-to-end service transaction and business process evolution visibility and

control across any infrastructure anywhere to deliver their business services with assured quality.

There is a reason for the increased complexity with scale and resiliency demand. According to

Cockshott et al [3] “the key property of general-purpose computer is that they are general purpose.

We can use them to deterministically model any physical system, of which they are not themselves a

part, to an arbitrary degree of accuracy. Their logical limits arise when we try to get them to model a

Proceedings 2017, 1, 3 3 of 5

part of the world that includes themselves.” They point to a fundamental limitation of current Turing

machine implementations of computations using the serial von Neumann stored program control

computing model. The universal Turing machine allows a sequence of connected Turing machines

synchronously to model a physical system as a description specified by a third party (the modeler).

The context, constraints, connections, communication abstractions and control of various aspects

(specifying the relationship between the computer acting as the observer and the computed acting as

the observed) during the execution of the model cannot be also included in the same description of

the model because of Gödel’s theorems of incompleteness and decidability.

According to Samad and Cofer [4] there are two theoretical limitations of formal systems that

may inhibit the implementation of autonomous systems. “First, we know that all digital computing

machines are “Turing-equivalent.” They differ in processing speeds, implementation technology,

input/output media, etc., but they are all (given unlimited memory and computing time) capable of

exactly the same calculations. More importantly, there are some problems that no digital computer

can solve. The best known example is the halting problem; we know that it is impossible to realize a

computer program that will take as input another, arbitrary, computer program and determine

whether or not the program is guaranteed to always terminate. Second, by Gödel’s proof, we know

that in any mathematical system of at least a minimal power there are truths that cannot be proven.

The fact that we humans can demonstrate the incompleteness of a mathematical system has led to

the claims that Gödel’s proof does not apply to humans.” An important implication of Gödel’s

incompleteness theorem is that it is not possible to have a finite description with the description itself

as the proper part. In other words, it is not possible to read yourself or process yourself as a process.

In short, Gödel’s theorems prohibit “self-reflection” in Turing machines. Louis Barrett highlights [5]

the difference between Turing machines implemented using von Neumann architecture and

biological systems. “Although the computer analogy built on von Neumann architecture has been

useful in a number of ways, and there is also no doubt that work in classic artificial intelligence (or,

as it is often known, Good Old Fashioned AI: GOFAI) has had its successes, these have been

somewhat limited, at least from our perspective here as students of cognitive evolution.” She argues

that the Turing machines based on algorithmic symbolic manipulation using von Neumann

architecture, gravitate toward those aspects of cognition, like natural language, formal reasoning,

planning, mathematics and playing chess, in which the processing of abstract symbols in a logical

fashion and leaves out other aspects of cognition that deal with producing adoptive behavior in a

changeable environment. Unlike the approach where perception, cognition and action are clearly

separated, she suggests that the dynamic coupling between various elements of the system, where

each change in one element continually influences every other element’s direction of change has to

be accounted for in any computational model that includes system’s sensory and motor functions

along with analysis. To be fair, such couplings in the observed can be modeled and managed using a

Turing machine network and the Turing network itself can be managed and controlled by another

serial Turing network. What is not possible is the tight integration of the models of the observer and

the observed with a description of the “self” using parallelism and signaling that are the norm and

not an exception in biology.

3. New Computing Model Infusing Cognition into Computing Workloads

The DIME network architecture presented in the Turing Centenary Conference [6 - 8] infuses

cognition into the Turing machine to create a managed Turing machine and introduces autonomic

management of applications in managing their resources. Figure 2 shows the new approach where

managed Turing machine computing model is applied to infuse cognition into application workload

management across distributed infrastructures.

Proceedings 2017, 1, 3 4 of 5

Figure 2: External cognition is complemented by internal cognition that allows both functional

and non-functional requirements to be fulfilled by autonomic computing and self-management.

The new approach (Figure 2) provides the following functions to implement cognitive processes

using distributed computing machines to execute an intent involving the reciprocal influence of

"bottom-up" and "top-down" processes:

1. Managing the “Life” of a Cognitive Process – Policy based resource assurance for system-

wide process execution: Each instance provides self-management of resources based on local policies

and an ability to load and execute a process using local operating system.

2. Instantiating a distributed process flow with scale-invariant composition and management

abstractions: Each instance has a unique identity upon instantiation. A regulator allows provisioning,

provides heart-beat, security, performance and account management for each process it executes. A

signaling scheme (providing addressing, alerting, mediation and supervision) to facilitate interaction

with other instances. The signaling allows same regulation features as one instance for a group of

instances (application subnetwork and network level).

3. Supporting [9] embodied, embedded, enacted and extended process flows using a DIME

network with a system-wide awareness: The DIME network provides a natural framework for

implementing reliable managed cognitive processes that are embodied (partly constituted by

distributed and specialized structures and processes). Individual processes at the leaf level may be

embedded (designed to function only in tandem with system’s environment. By interacting with the

environment through embedded processes, the DIME network supports cognitive processes that are

enacted. The distributed nature and interaction with environment provides the execution of extended

cognitive processes using the recursive composition capability of the DIME network.

4. Dynamic process Management: The run-time monitoring of both resource utilization and

process execution along with signaling capabilities allows policy based intervention in each instance

while computation is in progress using its Turing O-machine like behavior of each instance described

in the Turing centenary conference proceedings.

4. Conclusion

In this symposium, we have presentations on the recent advances in our understanding of the

new computing models, an implementation that takes the workload management beyond the current

state of the art to reduce complexity and a theoretical framework behind the new approach. The new

approach puts the safety and survival of application workloads and groups of applications delivering

a service transaction first and provides the information relevant to sectionalize, isolate, diagnose and

fix the infrastructure at leisure. Finally, I believe that Paul Horn’s vision is just around the corner.

References

1. J.O. Kephart and D. Chess, “The Vision of Autonomic Computing,” Computer, vol. 36, no. 1, 2003, pp.

41–50.

2. Huebscher, M. C. And mccann, J. A. "A survey of Autonomic Computing—Degrees, Models, and

Applications" ACM Computing Surveys, Vol. 40, No. 3, Article 7, August 2008.

Proceedings 2017, 1, 3 5 of 5

3. Cockshott P., mackenzie L. M., and Michaelson, G, (2012) Computation and its Limits, Oxford

University Press, Oxford.

4. Samad, T., Cofer, T., Autonomy and Automation: Trends, Technologies, In Gani, R., Jørgensen, S. B.,

(Ed.) Tools in European Symposium on Computer Aided Process Engineering volume 11, Amsterdam,

Netherlands: Elsevier Science B. V., (2001)

5. L. Barrett, “Beyond the Brain,” Princeton University Press, Princeton, 2011.

6. Mikkilineni, R.; Comparini, A.; Morana, G. The Turing O-Machine and the DIME Network

Architecture: Injecting the Architecture Resiliency into Distributed Computing, Proc. The Turing

Centenary Conference, Turing-100, Alan Turing Centenary, EasyChair Proc. In Computing, epic vol.

10 (ed. A. Voronkov), Manchester, UK, June 2012, 239-251.

7. R. Mikkilineni, "Going beyond Computation and Its Limits: Injecting Cognition into Computing."

Applied Mathematics 3 (2012): 1826.

8. Burgin, M., Mikkilineni, R., and Morana, G. (2016) Intelligent Organization of Semantic Networks,

DIME Network Architecture and Grid Automata, International Journal of Embedded Systems (IJES),

Vol. 8, No. 4.

9. Rowlands, M. (2010). The New Science of the Mind, The MIT Press: Cambridge

© 2017 by the authors. Submitted for possible open access publication under the

terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/)

