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Your bait of falsehood takes this carp of truth

W. Shakespeare, “Hamlet” 



Over the past two decades, the considerable efforts are
made to develop methods allowing the design of the
mathematical models with the lowest discrepancy
from the observed material object.

Numerous methods and criteria have been proposed to
achieve this goal. However, all of them are focused on
identifying a posterior uncertainty caused by the
ineradicable gap between model and a physical
system.

The present approach is focused to formulate the a priori
interaction between the level of detailed descriptions
of the material object (the number of recorded
variables) and the lowest achievable total
experimental uncertainty of the main researched
parameter.
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The very act of measurement process already presupposes
the existence of the physical-mathematical model
describing the phenomenon under investigation.

Measurement theory focuses on the process of measuring
the experimental determination of the values by using
special hardware called measuring instruments. This
theory covers only the aspects of data analysis and
measurement procedures of the variable observed or
after formulating a mathematical model.

Thus the problem that there is uncertainty before
experimental or computer simulation and caused by
limited number of variables recorded in the
mathematical model is generally ignored in the
measurement theory.
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Human intuition and experience tell a simple, at first glance,

the truth. For a small number of variables, the researcher

gets a rough picture of the process under study.

In turn, the huge number of variables recorded can allow a

deep and complete understanding of the structure of the

phenomenon. However, this apparent attractiveness of each

variable brings its own uncertainty in the integrated

(theoretical or experimental) uncertainty of the model or

experiment. Moreover, the complexity and cost of computer

modeling and field tests increase tremendously.

Thus, a rational or optimal number of

variables that is specific to each of the

studied processes need to be considered

in order to evaluate

the physical-mathematical model.
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Let's start with a simple example. We see the position of the point

x on the segment of length S (range of observation) with

uncertainty Δx. We introduce the definition:

 absolute uncertainty is  Δx,                                                    (1) 

 relative uncertainty is r = Δx/x,                                              (2)

 comparative uncertainty is ε = Δx/S.                                      (3)

The accuracy of the experiment ω can be defined as the value

inverse to:

ω = 1/ ε = S/Δx                                   (4)

This definition satisfies the condition that greater accuracy

corresponds to the lower comparative uncertainty. Absolute and

relative uncertainties are familiar to physicists. Regarding the

comparative uncertainty, it is rarely mentioned. Nevertheless,

this value is of great importance in the application of

information theory to physics and engineering sciences.
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If all the events are equiprobable, the quantity of information obtained by observing the 

object ΔZ is equal to                  

ΔZ = kb· ln(S/Δx) = - kb· lnε = kb lnω, (5)

where S/Δx is the number of events, kb is the Boltzmann constant, 1.38 m² kg/(s² K).

If the range of observation S is not defined, the information obtained during the

observation/measurement cannot be determined, and the entropic price becomes

infinitely large.

In turn, the efficiency Q of experimental observation, on the assumption that the some

perturbation is added in the system under study,

may be defined as the ratio of the obtained

information ΔZ to a value equal to the increase

in entropy ΔH accompanying observation:

Q = ΔZ / ΔH (6)

It follows from all the foregoing that the

modeling is an information process in which

information about the state and behavior of the

observed object is obtained by the developed

model. This information is the main subject of

interest of modeling theory.
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De facto, the physical-mathematical 
model formulation is based on two guidelines: 

Observation is framed by a System of Primary Variables (SPV)

The harmonic construction of modern science is based on a simple

consensus that any physical laws of micro- and macro-physics are

described by quite certain dimensional variables: primary and derived (secondary)

quantities. Taking variable as a fundamental generally means that it can be assigned as a

standard of measurement, which is independent from the standard that chosen for the

other fundamental variable. The primary variables are selected arbitrarily, while the

secondary variables are chosen to satisfy discovered

physical laws or relevant definitions. The variables are

selected within a pre-agreed system of primary

variables (SPV) such as SI (International system of

units) or CGS (centimeter–gram–second system of

units). The SPV is a set of dimensional variables,

which are primary and can generate secondary

variables. They are necessary and sufficient to describe

the known laws of nature, as in the quantitative

physical content.
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Number of variables taken into account 

in the physical-mathematical model is limited

SPV includes the primary and secondary variables used

for descriptions of different classes of phenomena (CoP).

In other words, the additional limits of the description

of the studied material object are caused due to the choice of CoP and

the number of secondary parameters taken into account in the

mathematical model. For example, in mechanics SI (International

system of units) uses the basis {L– length, M– mass, Т– time}, i.e.

CoPSI ≡ LMT. Basic accounts of electromagnetism here add the

magnitude of electric current I. Thermodynamics requires the inclusion

of thermodynamic temperature Θ. For photometry it needs to add J–

force of light. The final primary variable of SI is a quantity of substance

F.

If SPV and CoP are not given, then the definition of "information about

researched object" loses its force. Without SPV, the modeling of

phenomenon is impossible. 9



In SI there are ξ = 7 primary variables: L is the length, M is the mass, Т is

time, I is the electric current,  is the thermodynamic temperature, J is

the force of light, F is the number of substances.

The dimension of any secondary variable q can only be expressed as a 

unique combination of dimensions of the main primary variables to 

different powers (1): 

q Llכ  Mm Tt Ii  Jj Ff. (7)

l, m... f are exponents of the variables, the range of each has a maximum 

and minimum value. The exponents of variables can take

only integer values  and they  change in the following 

ranges: 

-3 ≤ l ≤ +3,  -1 ≤ m ≤ +1, -4 ≤ t ≤+4, -2 ≤ i ≤ +2,

(8)

-4 ≤  ≤ +4,     -1 ≤ j ≤ +1,     -1 ≤ f ≤ + 1.  

So, the number of choices of dimensions for each variable, according to (8),  

is the following:

еl = 7; еm = 3; еt = 9; еi = 5; еθ = 9; еj = 3; еf = 3.               (9)
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 The total number of dimension options of physical variables equals

Ψ° = еl ·еm · еt · еi · еθ · еj · еf -1 = 7 · 3 · 9 · 5 · 9 · 3 · 3-1 = 76 544,   (10)                      

where "-1" corresponds to the case where all exponents of the primary 

variables in the formula (7) are treated to zero dimension.

Ψ° includes both required, and inverse variables (for example, L¹ is the

length, L-1 is the running length). The object can be judged knowing

only one of its symmetrical parts, while others structurally

duplicating this part may be regarded as information empty.

Therefore, the number of options of dimensions may be reduced by

ω = 2 times. This means that the total number of dimension options

of physical variables without inverse variables equals

Ψ = Ψ°/2 = 38,272.

According to π-theorem, the number SIא of possible dimensionless

complexes (criteria) with ξ = 7 main dimensional variables for SI

will be

SIא = Ψ -ξ = 38,272 – 7 = 38,265. (11)
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We denote Δpmm as the uncertainty in determining the dimensionless theoretical

field u, "embedded" in a physical-mathematical model and caused only by its

dimension that is the property of the model to reflect a certain number of

characteristics of researched phenomena, its external and internal

connections:

Δpmm = Δpmm' + Δpmm'', (12)

where Δpmm' is the uncertainty due to CoP, which is associated with the

reduction in the number of recorded primary variables compared with SPV;

and Δpmm'' is the uncertainty due to the choice of the number of recorded

influencing variables within the framework of the set of CoP.

The equation (12) is an expression of the fact

that during modeling of any phenomenon

or technological process and equipment

there is a gap between the researched

object and its theoretical representation in

physical-mathematical form due to choosing

only CoP and a number of variables recorded

by the conscious observer due to his

knowledge, experience and intuition. 12



An overall uncertainty of the model including inaccurate input data,

physical assumptions, the approximate solution of the integral-

differential equations, etc., will be larger than Δpmm. Thus, Δpmm is only

one component of a possible mismatch of real object and its modeling

results. In turn, Δpmm'' cannot be defined without declaration of the

chosen CoP (Δpmm'). So, according to its nature, Δpmm will be equal to

the sum of two terms.

When comparing different models (according to a value of Δpmm)

describing the same object, preference should be given to the model for

which Δpmm/Δexp is closer to 1. The uncertainty Δexp is the estimated

uncertainty in the determination of the generalized objective function

(similarity criterion) during an experiment or computer simulation. It

will be always larger than Δpmm.

Many different models may describe essentially

the same object, where two models are

considered to be essentially the same if

they are indistinguishable from a value of Δpmm.
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For the purposes of our research, with some physical intuition thrown in, assume

that the recognized material object has a huge number of properties (variables,

complexes) that characterize its content and interaction with the environment.

Then we assume that each dimensionless complex represents the original readout

through which some information on the dimensionless researched field u

(recognized object) can be obtained by the observer.

In addition, the modeler takes into account the relatively small number of variables

than the current reality due to constraints of time, technical and financial

resources. Therefore, the "image" of the object

being studied is shown in the model with a certain

uncertainty, which depends primarily on the number

of variables taken into account. In addition, the object

can be addressed by different groups of

researchers, who use different approaches for

solving specific problems and, accordingly, different groups of variables, which

differ from each other in quality and quantity of the contents of variables. Such,

for example, happened when studying the motion of an electron, like particle or

wave. Thus, for any physical or technical problem, the occurrence of a particular

variable in the model can be considered as a random process.
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It is supposed that the accounting of readouts (complexes/variables) is

equiprobable. We want to emphasize that use of the concept

"readout" in examining some object at the stage of the model

development is due to the expediency of the vector (positional) ways

of representing information of the observed phenomena.

When there are a large numbers of components (a large-dimensional

vector space) it is possible to distinguish only two states of the vector

component: for example, presence or absence of a signal, in our case

the appearance or lack of a readout-variable.

It should be noted that the approval of the equiprobable

occurrence of readout is justified by the purpose of

the research – finding the absolute uncertainty Δpmm

stipulated by the level of the detail of the researched

object. Indeed, any other distribution of readouts yields less

information, which leads to a larger uncertainty of the model in

comparison with an uncertainty calculated at the uniform distribution

of readouts.
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This approach completely ignores the human evaluation of information. In other words,

a set of 100 notes played by chimpanzees, and a melody of Mozart’s 100 notes in his

Piano Concerto No.21-Andante movement, have exactly the same amount of

information. Let there be SIא readouts, such that there is an uncertainty directly

related to .SIא That is, the larger the ,SIא the greater the uncertainty. Its measured

numerical value is called entropy, and may be calculated by the formula:

H = kb·ln ,SIא (13)

where kb is the Boltzmann's constant.

When a researcher chooses the influencing factors (the conscious limitation of the

number of variables describing an object), the mathematical model entropy is

decreased a priori. It is natural to measure the entropy change by a parameter:

ΔH = Hpr – Hps, (14)

where ΔH is entropy difference between the two cases, pr – "a priori",

ps - "a posterior".

16



If one considers that the efficiency Q of the passive mental method

equals to one because just a thought experiment is conducted and no

distortion is brought into the real system (modeler is thinking only),

then one can write according to (14):

ΔA = Q ∙ ΔH = Hpr – Hps, (15)

where ΔA is the a priori information quantity about the material object.

Using Equations (13)-(15) and imposing symbols: z' being the number

of physical dimensional values in the selected CoP, β' is the number

of primary physical dimensional values in the selected CoP, we

obtain:

ΔA'=Q∙(H'pr –H'ps)=1∙[kb∙ ln SIא - kb∙ln(z'- β')] = kb·ln[אSI/(z'-β')], (16)

where ΔA' is the a priori amount of information quantity about the 

observed object due to the choice of CoP.

The value ΔA' is linked to Δpmm' and S (the dimensionless interval of 

supervision of a field u) by the dependence (Brillouin): 

Δpmm' = S exp (-ΔA'/kb ).                              (17)

where Δpmm' is the a priori uncertainty of the observed object model  

cased  only due to the choice of CoP. 17



Substituting (16) into (17):

Δpmm' = S (z' - β')/ .SIא (18)

Following the same reasoning, it can be shown thatΔ" is the following:

Δpmm'' = S (z''- β'')/(z'- β'), (19)

where Δpmm'' is the a priori uncertainty of the observed object model cased only due to

the choice of the number of recorded dimensionless variables in a model; z" is the

number of physical dimensional variables recorded in a mathematical model; β" is

the number of primary physical dimensional variables recorded in a model. Then,

summarizingΔpmm' and Δpmm'', one can estimate the value Δpmm.

All of the above could be summarized as follows in the form of א –hypothesis: Let

during a model formulation the chosen system of primary variables with the total

number of the dimensional physical variables be denoted by Ψ, ξ of which are of

independent dimension. In the framework of the class of phenomena (the total

number of the dimensional variables z', the number of the primary dimensional

variables β') there is a dimensionless field u raised in a given range of values S.

Then the absolute uncertainty of u calculation Δpmm (for a given number of the

recorded physical dimensional variables z", of which β" is the number of the

recorded primary physical dimensional variables) can be determined from the

relationship:

Δpmm = S ∙ [(z' – β')/( Ψ- ξ) – (z'' - β'')/(z' - β')], (20)

where ε = Δpmm/S is the comparative uncertainty.
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Using formula (20), one can find the recommended uncertainty value

with the theoretical analysis of the physical phenomena. Moreover,

equation (20) also can inform a limit on the advisability of obtaining

an increase of the measurement accuracy in conducting pilot studies

or computer simulation. It is not a purely mathematical abstraction

and it represents an intrinsic property of the model caused only by

the number of selected variables and the chosen CoP. Equation (20)

has physical meaning. This relationship testifies that in nature there

is a fundamental limit to the accuracy of measuring any observed

material object, which cannot be surpassed by any improvement of

instruments, methods of measurement and the model’s

computerization. The value of this limit is much more than the

Heisenberg uncertainty relation provides and places severe

restrictions on the micro-physics.

The overall uncertainty model including additional uncertainties

associated with inaccurate input data, physical assumptions, the

approximate solution of the integral-differential equations, etc., will

be larger than Δpmm. 19



Factually, equation (20) can be regarded as the uncertainty principle for the model

development process. Namely, any change in the level of the detailed description of

the observed object (z''-β''; z'-β') causes a change in the uncertainty model Δpmm and

the accuracy of each main variable characterizing the properties of the object internal

structure.

Equating the derivative of Δu/S (20) with respect to z'-β' to zero, we obtain the

condition for achieving the minimum comparative uncertainty for a particular CoP:

(z'-β')²/(Ψ- ξ) ) = (z''-β'') (21)

By usage of (21) we can find values of the lowest achievable comparative uncertainty

of different CoPSI :

1. For mechanics processes (CoPSI≡LMТ), taking into account the aforementioned

explanations and (21), the lowest comparative uncertainty εLMT can be reached at the

following conditions:

(z'-β') = el ·em ·et -1)/2-3=(7·3·9-1)/2-3=91,                           (22)

(z''-β'')= (z'-β')²/ (Ψ- ξ) = 91² /38,265=0.2164<1,                       (23)

where "-1" corresponds to the case when all the primary variable exponents are zero in

formula (7); dividing by 2 indicates that there are direct and inverse variables, e.g.,

L1 is the length, L-1 is the run length, and 3 corresponds to the three primary variables

L, M, T. 20



According to (22) εLMT equals 

εLMT = (Δu/S) LMT = 91/38,265+0.2164/91=0.0048.             (24)

In other words, according to (23), even one dimensionless main

variable does not allow one to reach the lowest comparative

uncertainty. Therefore, in the frame of the suggested approach,

nobody can realize the original first-born comparative uncertainty

using any mechanistic model (CoPSI ≡ LMТ). Moreover, the greater

the number of mechanical parameters, the greater the first-born

embedded uncertainty. In other words, for example, the Cavendish

method, in the frame of the suggested approach, is not recommended

for measurements of the Newtonian gravitational constant.

Such statements appear to be highly controversial,

and one might even say, very unprofessional,

not credible and far from current reality.

However, as we shall see below, the proposed

approach allows the obvious conclusions to be

made consistent with practice.
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2. For electromagnetic processes (COPSI ≡ LMТI), taking into account 

(9), the lowest comparative uncertainty can be reached at the 

following conditions:  

(z'-β') = el ·em ·et ·ei -1)/2-4=(7·3·9·5-1)/2-3=468,      (25)

(z''-β'')= (z'-β')²/ (Ψ- ξ) = 468² /38,265=5.723873≈6,   (26)

where "-1" corresponds to the case when all the primary variable 

exponents are zero in formula (7); dividing by 2 indicates that there 

are direct and inverse variables, e.g., L1 is the length, L-1 is the run 

length, and 4 corresponds to the four primary variables L, M, T, I.

Then, one can calculate the minimum achievable comparative 

uncertainty εLMTI

εLMTI = (Δu/S) LMTI= 468/38,265+5.723873/468=0.0244.      (27)
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3. For combined heat and electromagnetic processes (COPSI ≡ LMТΘI), taking 

into account (9), the lowest comparative uncertainty can be reached at the 

following conditions:  

(z'-β') = el ·em ·et ·eΘ ·ei -1)/2-4=(7·3·9·9·5-1)/2-5=4,247,                 (28)

(z''-β'')= (z'-β')²/ (Ψ- ξ) = 4,247² /38,265≈471,                         (29)

where "-1" corresponds to the case when all the primary variable exponents are 

zero in formula (7); dividing by 2 indicates that there are direct and inverse 

variables, e.g., L1 is the length, L-1 is the run length, and 4 corresponds to 

the four primary variables L, M, T, Θ, I.

Then, one can calculate the minimum achievable comparative uncertainty 

εLMTΘI

εLMTΘI = (Δu/S)LMTΘI = 4,247/38,265+471/4,247=0.2219.        (30)
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4. For heat processes (COPSI ≡ LMТΘ), taking into account (9), the lowest 

comparative uncertainty can be reached at the following conditions:  

(z'-β') = el ·em ·et ·eΘ -1)/2-4=(7·3·9·9-1)/2-5=846,                  (31)

(z''-β'')= (z'-β')²/ (Ψ- ξ) = 846² /38,265≈19,                          (32)

where "-1" corresponds to the case when all the primary variable exponents are 

zero in formula (7); dividing by 2 indicates that there are direct and inverse 

variables, e.g., L1 is the length, L-1 is the run length, and 4 corresponds to 

the four primary variables L, M, T, Θ.

Then, one can calculate the minimum achievable comparative uncertainty 

εLMTΘI

εLMTΘ = (Δu/S)LMTΘ = 846/38,265+19/846=0.0442.                 (33)

Let us now try to apply the aforementioned method for the analysis of the 

accuracy of  the mathematical models of heat transfer processes and 

measurement accuracy of fundamental physical constants.
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APPLICATIONS OF THE COMPARATIVE 

UNCERTAINTY METRIC

1.Freezing 

The process of freezing and sub-cooling of the paste material layer posted onto a

moving cooled cylinder wall has been investigated [1] in two-dimensional

space on a closed rectangular region is described. According to analysis of

the recorded variables dimensions, the model is classified by CoPSI≡LMT,

(z'-β')=846 (28), (z''-β'')=19 (29), εLMTΘ = (Δu/S)LMTΘ =0.0442 (30).

There were recorded 18 (z*) input dimensional variables

and 5 (β*) primary physical variables, such that we

obtain z*-β*=18-5=13 for the dimensionless criteria.

A study of the developed model by computer simulation

using the random balance method has been

conducted. As the objective function, the final dimensionless temperature of

the outer surface of the material Θ was selected.

The declared achieved discrepancy between the experimental and computational

data in the range of admissible values of the similarity criteria and

dimensionless conversion factors did not exceed 8%.
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It can be shown that an absolute total dimensionless uncertainty of the indirect 

measurement (ΔΘs)exp, reached in the experiment equals

(ΔΘs)exp = 0.066.                                         (34)

From equation (20), using calculated values SIא (11), z'-β' (28), and (z''-β'')

(29), one obtains a dimensionless uncertainty value (Δs)pmm of the chosen

model:

(ΔΘs)pmm ≤ Θsmax∙ ((z'-β')/אSI + (z*-β*)/(z'-β')) =

= 0.93∙[846/38,265+13/846] ≈ 0.038, (35)

where Θsmax= 0.93 is the dimensionless given range of changes of the

dimensionless final temperature allowed by the chosen model [1].

From (34) and (35) we get (ΔΘs)exp> (ΔΘs)pmm, i.e., an actual uncertainty in the

experiment is 1.7 times (0.066/0.038) larger than the possible minimum. It

means, at the recorded number of dimensionless criteria the existing

accuracy of the dimensional variable’s measurement is insufficient. In

addition, the number of the chosen dimensionless variables z*-β*=13 is less

than the recommended ≈19 (39) that corresponds to the lowest comparative

uncertainty at CoPSI ≡ LMT. That is why, for further experimental work it

is required to use devices of a higher class of accuracy sufficient to

confirm/clarify a new model designed with many dimensionless variables.
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2.Gravitational constant G

In none of the current experiments of the calculation of NGC value has

the prospective interval been declared, in which its true value can

be placed. In other words, the exact trace of the placement of G is

lost somewhere. Therefore, in order to apply our stated approach,

as a possible measurement interval of G, we choose the difference

of its value reached by the experimental results of two projects:

Gmin =6.6719199·m3 kg-1s-2 [2] and Gmax = 6.6755927·m3kg-1s-2 [3].

Then, the possible observed range S* of G variations equals

SG* = Gmax - Gmin = 6.6755927·10-11- 6.6719199·10-11 = 

= 3.6728· m3 kg-1 s-2.                                             (36)                    

Taking into account (36), we analyzed several publications and CODATA

(Committee on Data for Science and

Technology) recommendations over the past

15 years (2000–2016) from the position of the

reached relative and comparative uncertainty

values. These data are summarized in Figures 1, 2.
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Figure 1. A graph summarizing the 

partial history of measurement of 

Newtonian gravitational  constant 

measurements by view of the 

reached relative uncertainty rG

Figure 2. A graph summarizing the 

partial history of measurement of 

Newtonian gravitational constant 

measurements by view of the reached 

comparative uncertainty εLMTI

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1999 2001 2003 2005 2007 2009 2011 2013 2015

R
el

at
iv

e 
u
n
ce

rt
ai

n
ty

, 
r G

x
1
0

-5

Publication year of research

[4]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[2]

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

1999 2001 2003 2005 2007 2009 2011 2013 2015

C
o
m

p
ar

at
iv

e 
u
n
ce

rt
ai

n
ty

, 
ε G

Publication year of research

[4]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[2]



It is seen from the data given in Figures 1 and 2 that there was not a

dramatic improvement of the accuracy of the measurement of G

during the last 15 years. This is true when based on the calculation of

the relative uncertainty, the possible achievable lowest value of

which was not mentioned.

In addition, judging the data by the comparative uncertainty according

to the proposed approach, one can see that the measurement accuracy

had not significantly changed either. Perhaps this situation has arisen

as a result of unaccounted systematic errors in these experiments.

At the same time, it must be mentioned that, most likely, the exactness

of G as other fundamental physical constants, cannot be infinite, and,

in principle, must be calculable. Therefore, the development of a

larger number of designs and an improvement of the various

experimental facilities for the measurement of G by using schemes

combining a torsion balance and electromagnetic equipment

(electrostatic servo control) is absolutely necessary in order to obtain

closer results to the minimum comparative uncertainty

(εmin)LMTI.=0.0244 (27) .
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Applying the present approach, we can argue about the order of the

desired value of the relative uncertainty (rmin)LMTI . For this purpose,

we take into account the following variables: (εmin)LMTI = 0.0244

(27), SG*=3.6728·10-14 (36). Then, the lowest possible absolute

uncertainty for CoPSI≡LMТI equals

(Δmin)LMTI = (εmin)LMTI · S*= 0.0244 · 3.6728·10-14 = 

= 8.961632· m3 kg-1 s-2.                              (37)                                                                                                                            

In this case, the lowest possible relative uncertainty (rmin)LMTI for

CoPSI ≡LMТI is as follows:

(rmin)LMTI = (Δmin)LMTI /((Gmax + Gmin) /2) =

= 8.961632·10-16/6.673756·10-11= 1.353823·10-5 ≈ 1.35·10-5.    (38) 

This value is in excellent agreement with the recommendations 

mentioned in [10] of 1.4·10-5 and could be particularly relevant in 

the run-up to the adoption of new definitions of SI units.
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3.Boltzmann constant

Analysis of the Boltzmann constant measurements made during 2007–2015

shows that none of the current experimental measurements that calculate

kb have declared an uncertainty interval in which the true value can be

placed. Therefore, in order to apply the stated approach, as the estimated

interval of kb changes, we choose the difference of its value reached by the

experimental results of two projects: kbmax = 1.38065511·10-23 m² kg/(s² K)

[16] and kbmin = 1.380640·10-23 m² kg/(s² K) [17]. In this case, the possible

observed range Sk of kb variation is equal

Sk = kbmax - kbmin = 1.501·10-28 m² kg/(s² K).                          (39)

We studied several scientific publications and

CODATA recommendations over eight years from

the perspective of the achieved relative and

comparative uncertainties values. The data are

summarized in Figures 3-5. By analyzing

theoretical methods and experimental schemes, one can declare that results

were obtained using CoPSI ≡LMТ or CoPSI ≡LMТI.
31
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Figure 4. Graph summarizing the partial history 

of Boltzmann constant measurement, displaying 

changes in the relative uncertainty.

Figure 5. Graph summarizing the partial history

of Boltzmann constant measurement displaying

changes in the comparative uncertainty.
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It can be seen from the data given in Figures 3–5 that a dramatic

improvement in the accuracy of measurement of the Boltzmann

constant has not been achieved during the last decade, judging the

data by both relative and comparative uncertainties and two different

CoPSI : LMТ, LMТI.

Despite the fact that the authors of the mentioned studies stated on

account of all possible sources of uncertainty, the value of the

absolute and relative uncertainties can differ by more than twenty

times. A similar situation exists for the spread of the value of the

comparative uncertainty.

Without going into analysis of the uncertainties nature, a part of which

the researchers have already identified, we can say with great

confidence that, under the proposed approach, one of the reasons for

the created unsatisfactory situation is a number of variables taken

into account in the measurement or the chosen model for calculation

of the Boltzmann constant.
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So, for CoPSI ≡LMТ, in order to achieve the minimum comparative

uncertainty there must be taken into account 19 variables (33), and

for CoPSI ≡LMТI already 471 (30) variables. In all these works the

number of variables taken into account is much smaller. Thus, to

improve the accuracy of measurement of the Boltzmann constant

there need to complicate experimental stands. To realize this goal,

scientists must be prepared to spend sufficient resources.

However, the key data that provide the 2010 recommended value of kb

would appear to be close to meeting CODATA requirements [13]. At

the same time, the development of a larger number of designs and

improvements of various experimental facilities for the measurement

of the Boltzmann constant is required in order to bring the results

closer to the minimum comparative errors (εmin)LMTθ or (εmin)LMTθI.
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We can argue about the order of the desired value of the relative

uncertainty of CoPSI ≡ LMТ that is usually used for measurements

of the Boltzmann constant. For this purpose, we take into account the

following data: (εmin)LMTθ =0.0442 (33), Sk =1.501·10-28 m² kg/(s² K)

(39). Then, the lowest possible absolute uncertainty for CoPSI

≡LMТ equals

(Δ min)LMTθ = (εmin)LMTθ · Sk = 0.0442 · 1.501·10-28 =

= 0.066344·10-28 m² kg/(s² K). (40)

In this case, the lowest possible relative uncertainty (rmin) LMTθ for CoPSI

≡LMТ is as follows:

(rmin)LMTθ = (Δ min)LMTθ / ((kbmax+ kbmin)/2)=

= 0.066344·10-28/ 1.380648·10-28=4.8·10-7. (41)

This value is in excellent agreement with the recommendations

mentioned in [25] (5.7·10-7), and can be used for the new definition

of the Kelvin and a significant revision of the International System of

Units (SI).
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The concept of relative uncertainty was used when considering the

accuracy of the achieved results (absolute value and absolute

uncertainty of the separate variables and criteria) during the

measurement process in different applications. However, this method

for identifying the measurement accuracy does not indicate the

direction of deviation from the true value of the main variable. In

addition, it involves an element of subjective judgment. That is why,

for the purposes of this approach, along with a relative uncertainty,

this study recommends a comparative uncertainty for analyzing

published results.

The introduced novel analysis is intended to help physicists and

designers to determine the most simple and reliable way to select a

model with the optimal number of recorded variables calculated

according to the minimum achievable value of the model uncertainty.

The information approach and its presented results can be used for the

prediction of the model’s discrepancy of physical phenomenon and

technological process for the practical problems of macro- and

microphysics.
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One important remark about the physical meaning of the

proposed information approach. Any physical process,

from quantum mechanics to palpitation, can be viewed by

the observer only through the idiosyncratic "lens". Its

material is alloy of not only mathematical equations, but

also, without fail, regardless of the researcher's desire, his

intuition, experience and knowledge. They, in turn, are

framed by a system of primary variables, which is also

chosen by the universal agreement of human individuals.

Thus, the aberration in modeling (distortion of reality) is

inherent, before the formulation of any physical, and even

more so, mathematical statement. The degree of depravity

of the image of a true real object depends precisely on the

chosen class of phenomena and the number of variables

considered.
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