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Abstract 

In the frame of a biotinylation program of biologically active amines we synthesized two 

amides from 2-phenetylamine and 3,4-dimethoxybenzylamine, that were fully characterized 

by means of multinuclear NMR spectroscopy.  
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Introduction 

The highly specific interaction of avidin with the small vitamin biotin can be a useful tool in 

assay systems designed to detect and target biological analytes.[1] The extraordinary affinity 

of avidin for biotin (Ka = 1015 M-1) allows biotin-containing molecules in a complex mixture to 

be discretely bound with avidin conjugates.[2,3] 
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In this context we have synthesized two new amides 1 and 2, from 2-phenethylamine (an 

endogenous amine structurally and pharmacologically related to amphetamine, found in 

normal urine)[4] and veratrylamine or 3,4-dimethoxybenzylamine (a chemical repellent 
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presumed to activate trigeminal neurons)[5] and their fully characterization by multinuclear 

magnetic resonance spectroscopy (1H, 13C, and 15N) in solution has been achieved.  
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Figure 1. Structures of the amides  

Results and discussion 

Instead to start the preparation of the aforementioned amides 1 and 2 from (+)-biotin 

acid chloride or (+)-biotin methyl ester,[6]  the synthesis was approached by treatment of the 

free acid, (+)-biotin, with the primary amines in presence of triphenylphosphite[7]  with yields 

of 81% and 83%, respectively. Purification was achieved by successive wash with toluene 

and hexane.  
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The structural characterization of biotinylated amines, 1 and 2, was achieved by 1H, 13C 

and 15N NMR and the fully assignments are given in Tables 1 and 2. Multiplicity of the signals 

as well as 2D experiments (HMQC and HMBC) have been used.[8] The data here presented 

agree with those reported by us for related biotin derivatives.[9,10] 

In the case of compound 1, the correlations observed in the (1H-1H) COSY NMR 

spectra are depicted in Figure 2, being the signal that corresponds to H4, at 3.07 ppm, the 

key starting point to complete the assignments.  
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Figure 2. 1H-1H-COSY NMR spectra correlations for compound 1 in DMSO-d6 

 

The (1H-15N) HMBC spectra proved to be very useful not only to measure the 

chemical shifts of the different nitrogens for each amide, but to determine the NH coupling 

constants.  
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Figure 3. 1H-15N HMBC spectra in DMSO-d6 of amides 1 (a) and 2 (b) 

3 
 

 



  

Table 1: Chemical shifts ( in ppm) and coupling constants (J in Hz) of compound 1 in 

DMSO-d6. 

 

Chemical 

shifts 

Nuclei Coupling constants HMQC 

correlations

HMBC correlations 

7.82  H-amide 3JH1’’= 5.7 N-amide C1’, C1’’ 
7.27  H3’’’ --- C3’’’ C1’’’, C2’’ 
7.18  H2’’’, H4’’’ --- C2’’’, C4’’’ C2’’’  
6.39  H3 3JH3a= 4JH1= 1.8 N3 C2, C3a, C6a, N1 
6.33  H1 --- N1 C2, C3a, C6a, N3 
4.30  
 

H6a 3JH3a= 7.7 
3JH6= 5.2 
3JH1= 3JH6= 1.0 

C6a C2, C4 

4.11  H3a 3JH6a= 7.7 
3JH4= 4.4 
JH3= 1.9 

C3a C4 

3.24  H1’’ --- C1’’ C1’, C1’’’ 
3.07  
 

H4 3JH5= 8.5 
3JH5= 6.1 
3JH3a= 4.5 

C4  

2.81  
 

H6 2Jgem= 12.4 
3JH6a= 5.1 

C6 N1 

2.68  H2’’ 3J= 7.7 C2’’ C1’’’, C2’’’, C3’’’, N-amide
2.57  H6 2Jgem= 12.3 C6 C3a, C62, C4, N1 
2.02  H2’ 3J= 7.3 C2’ C1’, C3’, C5’ 
1.58  H5’  C5’  
1.43  H5’, H3’  C5’, C3’  
1.27  H4’  C4’  
171.9 C1’  --- NH-amide, H1’’, H2’, H3’ 
162.7 C2  --- H3, H1, H6a 
139.5 C1’’’  --- H3’’’, H1’’, H2’’ 
128.6 C3’’’  7.27 H3’’’ 
128.2 C2’’’  7.18 H2’’’, H4’’’ 
126.0 C4’’’  7.18 H2’’’ 
61.0 C3a  4.11 H3, H1, H6 
59.2 C6a  4.30 H3, H1, H6 
55.4 C4 1J= 124.0 3.07 H6a, H3a, H6 
40.0 C1’’  3.24 H-amide  
39.8 C6  2.81, 2.57 --- 
35.2 C2’, C2’’  2.02, 2.68 H3’’’, H1’’, CH2 multiplets 
28.1 C4’  1.27 CH2 multiplets 
28.0 C5’  1.58, 1.43 CH2 multiplets 
25.3 C3’  1.43 H2’ 
-299.6 N3 1J= 93.3 6.39 H1 
-290.8 N1 1J= 93.3 6.33 H3, H6 
-262.5 N-amide 1J= 89.4 7.82 H2’’ 
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Table 2: Chemical shifts ( in ppm) and coupling constants (J in Hz) of compound 2 in 

DMSO-d6. 
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Chemical 
shifts 

Nuclei Coupling constants HMQC 
correlations

HMBC correlations 

8.20  H-amide 3JH1’’= 5.9 N-amide C1’, C1’’ 
6.87  H5’’’ 3JH6’’’= 8.2 C5’’’ C1’’’, C3’’’ 
6.86  H2’’’ 4JH6’’’= 2.0 C2’’’ C4’’’, C6’’’, C1’’ 
6.74  H6’’’ 3JH5’’’= 8.2 

4JH2’’’= 2.0 
C6’’’ C4’’’, C2’’’, C1’ 

6.40  H3  N3 C2, C6a, C3a 
6.34 H1  N1 C2, C6a, C3a 
4.29 H6a 

 

3JH3a= 7.5 
3JH6= 5.1 
3JH1= 3JH6= 1.0 

C6a C1 

4.17 H1’’ 3JH-amide= 5.9 C1’’ C1’, C1’’’, C2’’’, C6’’’ 
4.10 


H3a 3JH6a= 7.7 

3JH4= 4.4 
3JH3= 1.9 

C3a  

3.72  3’’’-OCH3 --- 3’’’-OCH3 C3’’’ 
3.71  4’’’-OCH3 --- 4’’’-OCH3 C4’’’ 
3.07 


H4 3JH5= 8.6 

3JH5= 6.2 
3JH3a= 4.5 

C4  

2.81 


H6 2Jgem= 12.4 

3JH6a= 5.1 
C6 C6a, C3a 

2.57 H6 2Jgem= 12.4 C6 C6a, C3a 
2.11 H2’ 3J= 7.4 C2’ C1  
1.31 H3’    
1.53 H4’ H5’     
171.9 C1’   NH-amide, H1’’, H2’ 
162.7 C2   H3, H1, H6a 
148.6 C3’’’   H5’’’, 3’’’-OCH3 
147.7 C4’’’   H6’’’, H2’’’, 4’’’-OCH3 
132.1 C1’’’   H5’’’, H1’’ 
119.2 C6’’’ 1J= 162.6 6.74 H2’’’, H1’’ 
111.7 C5’’’ 1J= 158.0 6.87 ---- 
111.3 C2’’’ 1J= 156.4 6.86 H6’’’, H1’’ 
61.0 C3a 1J= 147.2 4.10 H3, H1, H6 
59.2 C6a 1J= 150.3 4.29 H3, H1, H6  
55.6 4-OCH3 

1J= 144.2 3.71 --- 
55.4 3-OCH3 

1J= 144.2 3.72 --- 
41.7 C1’’  4.17 NH-amide, H2’’’, H6’’’ 
39.8 C6  2.81, 2.57  
35.1 C2’ 1J= 125.7 2.11 CH2 multiplets 
28.2 C5’ 1J= 124.2 1.53 H4, CH2 multiplets 
28.0 C4’ 1J= 133.4 1.53 CH2 multiplets 
25.3 C3’ 1J= 127.3 1.31 H2’ 
-299.6 N3 1J= 94.5 6.40  
-290.8 N1 1J= 94.5 6.34  
-261.0 N-amide 1J= 90.8 8.20  



  

Finally, the conformational changes in molecules 1 and 2, induced by the solvent 

(CDCl3, HMPA-d18) or the phase (solid state), are now under investigation.  

Experimental Procedure 

Chemistry 

N-phenethyl-5-{(3aS, 4S, 6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl} pentanamide 

(1) and N-(3,4-dimethoxybenzyl)-5-{(3aS, 4S, 6aR)-2-oxo-hexahydro-1H-thieno[3,4-

d]imidazol-4-yl}pentanamide (2) 

To a stirred suspension of (+)-biotin (2 mmol) and 2-phenethylamine or veratrylamine 

(3 mmol) in toluene (6 mL), a solution of triphenylphosphite (3 mmol) in toluene (6 mL) was 

gradually added at room temperature. The reaction mixture was stirred at toluene reflux 

(110°C) during 16 h. The solution was left to attain the room temperature and the product 

precipitated as white solid, then was filtered, washed with toluene (2 X 50 mL) and hexane (1 

X 50 mL) and dried under vacuum affording the pure amides 1 and 2. Melting points were 

determined in a hot-stage microscope being 194-196 °C and 153-155°C, respectively. 

NMR spectroscopy 

Spectra were recorded at 300 K on a Bruker DRX 400 (9.4 Tesla, 400.13 MHz for 1H, 

100.62 MHz for 13C and 40.56 MHz for 15N) spectrometer with a 5-mm inverse detection H–X 

probe equipped with a z-gradient coil for 1H, 13C and 15N, save specified. Chemical shifts ( in 

ppm) are given from internal solvent, DMSO-d6 (2.49) for 1H and (39.5) for 13C. And external 

reference CH3
15NO2 (0.00) for 15N NMR was used. 2D (1H–1H) gs-COSY and inverse proton 

detected heteronuclear shift correlation spectra, (1H–13C) gs-HMQC, (1H–13C) gs-HMBC, 

(1H–15N) gs-HMQC, and (1H–15N) gs-HMBC, were acquired and processed using standard 

Bruker NMR software and in non-phase-sensitive mode.[8] Gradient selection was achieved 

through a 5% sine truncated shaped pulse gradient of 1 ms. 
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