Xingwang Zhang Professor College of Chemical and Biological Engineering Zhejiang University

Biography

Xingwang Zhang received BEng degree in Environmental Engineering from the Shandong University in 2001, and Ph.D. degree from the College of Environmental & Resources, Zhejiang University in 1996. He is currently a professor in the College of Chemical and Biological Engineering, Zhejiang University. He has published more than 80 journal papers. His research interests cover mainly phoelectrochemisty, nanomaterials and environments.

Presentation Title: 3D Silicon Nanopillars Coated with Earth-Abundant Electrocatalysts for Enhanced Photoelectrochemical Hydrogen Production

Solar-driven photoelectrochemical (PEC) water splitting for hydrogen production promises to solve the impending energy and environmental crisis. The key to increase the efficiency of PEC hydrogen generation is developing high-performance catalysts and photocathodes. 3D p-type silicon (p-Si) arrays are promising architectures due to the high light harvesting and the large interfacial areas. We demonstrate its enhanced PEC performance with a photocurrent density of -37.5 mA/cm² at 0 V (vs. RHE) under simulated 100 mW/cm² (1 Sun) with an AM 1.5 G filter, which is the highest value reported for p-type Si photocathodes. The synergic effects of the excellent light harvesting of Si nanopillar (NP) array core and the good optical transparency, as well as excellent electrocatalytic activity of $NiCoSe_x$ shell boost the production and utilization of photogenerated electrons. The Faradaic efficiency of H₂ and O₂ on p-Si/NiCoSe_x was approximately 100%, which confirmed that the photocurrent during PEC reaction was attributed to hydrogen generation. The completely enclosed core-shell structure isolated the Si NP from air and aqueous electrolyte and minimized the oxidation of silicon, leading to good stability. The design of p-Si/NiCoSe_x core/shell NP arrays offers a new strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.