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 SMANNs workflow used in this work 

Abstract. W can represent the brain as a Brain 

Connectome Network (BCN) formed by ni brain cortex 

regions (groups of neurons) interacting with others (Lij = 

1) or not (Lij = 0) by means of electrophysiological co-

activation (synapses). The large number of links to be 

study and their complex connectivity patterns made 

difficult to select the appropriate topology in order to 

predict them with Artificial Neural Networks (ANNs) 

algorithms. In this context, Automated Machine Learning 

(AutoML) techniques may help non-experts to select, 

train, validate, and use automatically the correct 

algorithms. In this work, we developed a new ÁutoML 

Screening Model for ANN (SMANN) algorithm to solve 

this problem. In so doing, we can quantify topological 

(connectivity) information of both the complex networks 

under study and a set of ANNs trained using Shannon 

measures. We developed one SMANN AutoML model 

with >85% of accuracy for 52690 outputs of 10 different 

ANNs and 52690 pairs in the BCN.  
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