

3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde

Activity of Vitamin E Phosphate (VEP) Prodrugs of Gemcitabine in a Xenograft Model of NSCLC (NCI-H460)

Richard Daifuku¹

¹ Epigenetics Pharma, Mercer Island, WA, 98040, USA

* Corresponding author: rdaifuku@yahoo.com

Abstract: VEP nucleosides bypass two mechanisms of tumor resistance: nucleoside transport and kinase downregulation. Isoforms of VE have shown activity against solid and hematologic tumors. Gemcitabine was conjugated at the 5' position to either δ -tocopherol-MP (NUC050) or δ -tocotrienol-MP (NUC052).

NUC050 has been demonstrated to deliver gemcitabine-MP intracellularly. Its half-life IV in mice is 3.9 compared to 0.28 hours for gemcitabine (*European J Cancer.* 2016. 61(Suppl. 1):S119).

When tumors in nude mice reached 32 to 75 mg mm³ (day 4) treatment was initiated with gemcitabine (120 mg/kg IP q3dx9), NUC050 or NUC052 (both 40 mg/kg qwkx4) and compared to saline control (SC).

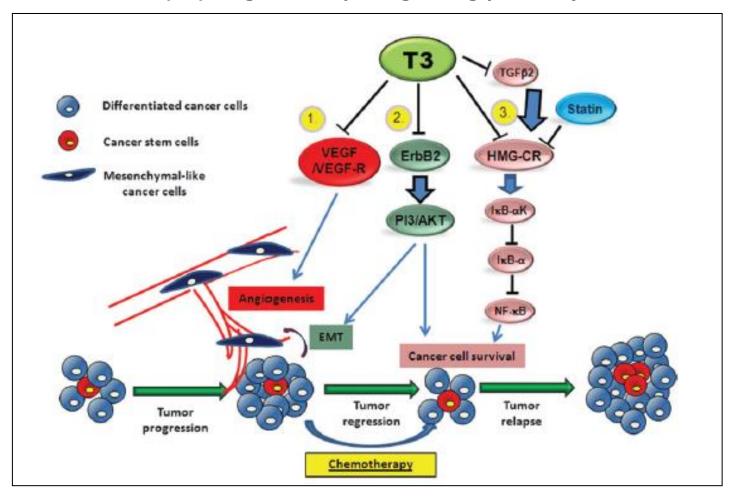
Gemcitabine inhibited tumor growth but was not tolerated. NUC050 resulted in inhibition to tumor growth on days 11-31 (p<0.05), with a nadir of -73% compared to SC. Median survival was 25.5 days (SC) vs 33 days (NUC050) ((hazard ratio) HR=0.24, p=0.017). NUC052 had the dose increased to 50 mg/kg after 2 doses. NUC052 resulted in inhibition to tumor growth on days 14-27 (p<0.05), with a nadir of -45%, and median survival was 34 days (HR=0.27, p=0.033). NUC050 and NUC052 have been shown to be safe and effective in a NSCLC xenograft. Studies have been initiated in a pancreatic cancer xenograft.

Keywords: gemcitabine; tocopherol; tocotrienol; xenograft; resistance

INTRODUCTION

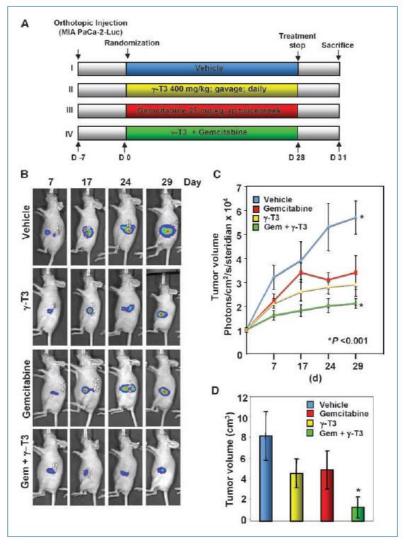
- VEP nucleoside prodrugs are designed to provide the following advantages:
 - Certain vitamin E isoforms have substantial anti-tumor activity.
 - Bypass two major mechanisms of tumor resistance to nucleosides, namely:
 - Nucleoside transport downregulation.
 - Kinase downregulation.
 - Prolong the half-life of the nucleoside analog:
 - In the case of cytidine analogs, VEP prodrugs are unlikely to be substrates for cytidine deaminase, the enzyme responsible for the short half-life of cytidines.
- For ease of synthesis and relevance, gemcitabine was conjugated with VEP as a model system.

Comparative activity of tocopherols and tocotrienols in tissue culture


- Comparative effects of tocopherols and tocotrienols on preneoplastic (CL-S1), neoplastic (-SA), and highly malignant (+SA) mouse mammary epithelial cell growth and viability in vitro.
 - Treatment with 0-120 μ M α and γ -tocopherol had no effect on cell proliferation.
 - Growth was inhibited 50% (IC_{50}) as compared with controls by treatment with the following in CL-S1, -SA and +SA cells, respectively :
 - δ -tocopherol: 55, 47, and 23 μ M
 - α-tocotrienol: 12, 7, and 5 μM
 - γ-tocotrienol: 8, 5, and 4 μM
 - δ -tocotrienol: 7, 4, and 3 μM
 - Highly malignant +SA cells were the most sensitive and preneoplastic CL-S1 cells were the least sensitive to the antiproliferative and apoptotic effects of δ -tocopherol and tocotrienols

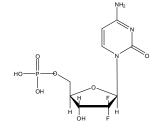
Proc Soc Exp Biol Med. 2000; 224(4):292-301

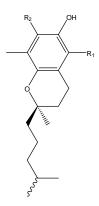
Tocotrienols (T3) target multiple signaling pathways in cancer



Carcinogenesis. 2012; 33:233-239

Gemcitabine and y-tocotrienol are additive in a pancreatic cancer xenograft


Cancer Res. 2010; 70(21):8695-8705


Proposed intracellular metabolism of VEP prodrugs

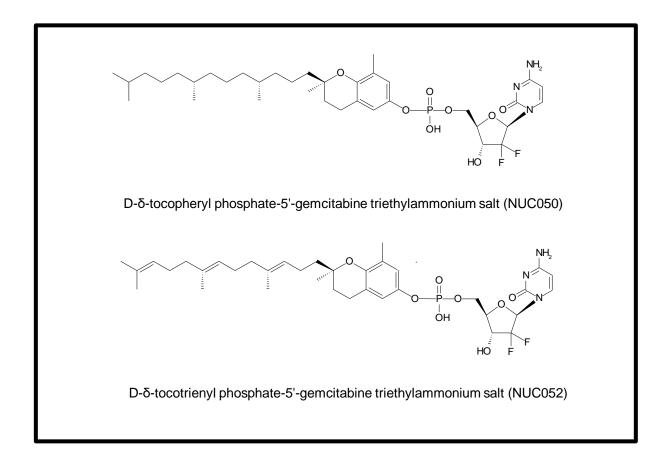
VEP-nucleoside

Phosphatase?
Phosphodiesterase?

Nucleoside-MP

Vitamin E

VEP-gemcitabine bypasses two mechanisms of resistance to gemcitabine


- In vitro, NUC050 has shown:
 - That cellular penetration is independent of nucleoside transport.
 - Intracellular delivery of gemcitabine monophosphate.
- In mice, NUC050 (δ -tocopherol phosphate gemcitabine) has shown:
 - When administered IV, a half-life of 3.9 hours.
 - Gemcitabine half-life is reported to be 0.28 hours.
- MTD of NUC050 was established at 40 mg IV qwk.
- A small pilot sudy in nude mice suggested efficacy of NUC050 against colon cancer (LoVo).
 - Two mice demonstrated maximum tumor weight reduction of 50.6% compared to 5 saline matched controls.

European J Cancer. 2016. 61(Suppl. 1):S119

VEP prodrugs of gemcitabine tested in H460 model of NSCLC

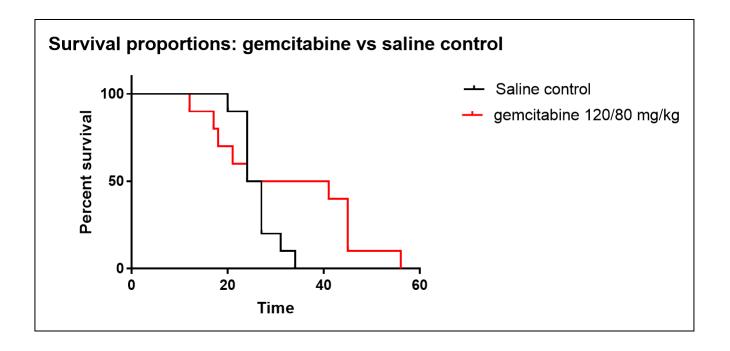
METHODS

- 10⁷ tumor cells from culture in Matrigel™ of H460 NSCLC were implanted subcutaneously in the flank of NCr-*nu/nu* mice.
- Study initiation began when the required number of mice had tumors of approximately 32 to 75 mm³.
 - Mice (n= 10/group) received either:
 - Normal saline (negative control).
 - Gemcitabine 120 mg/kg IP q3d (positive control) x 9.
 - NUC050 40 mg/kg IV qwk x 4.
 - NUC052 40 mg/kg IV qwk x 4.
- Mice were euthanized per protocol when:
 - Their weight decreased more than 30% from the weight on the first day of treatment.
 - Their tumor reached 4,000 mm³ in volume, ulcerated or sloughed off.
 - The animal was moribund.

STUDY CONDUCT

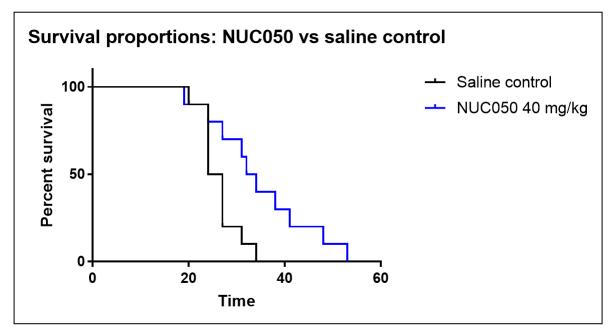
Mice treated with NUC050 and NUC052 were subdivided into two groups (n = 5), with one group administered normal saline (NS) as the vehicle and the other a nano-emulsion developed for NUC050.

In the course of the study, the following adjustments were made:


- After 4 doses, the gemcitabine dose was decreased to 80 mg/kg IP q3d because of weight loss and one death attributed to drug toxicity.
- After receipt of two doses of NUC050, it was noted that mice treated with NUC050 in NS had better outcomes than those treated with emulsion:
 - Tumor mean volume 183.4 mm³ vs 513.0 mm³ (p = 0.031, student t-test);
 - Mean mouse weight 20.9 vs 18.3 g (p = 0.014, student t-test).
 - Protocol was amended and all mice received NS.
- No vehicle toxicity was noted for NUC052, however, the mice receiving emulsion were switched to NS on the same study day and the dose increased to 50 mg/kg.

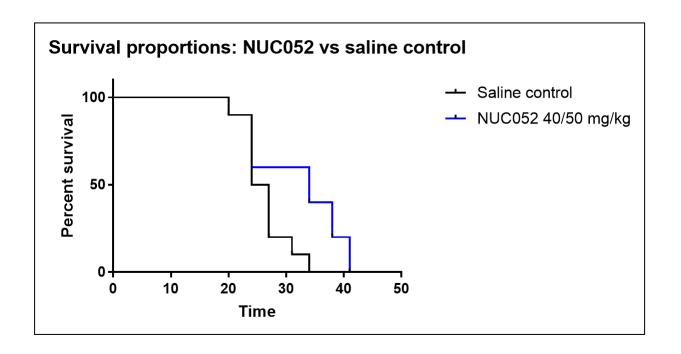
RESULTS AND DISCUSSION

Gemcitabine was toxic at doses tested



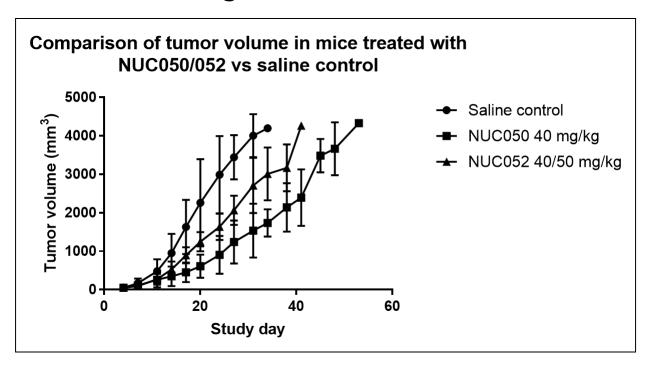
Median survival saline 25.5 days, gemcitabine 32.5 days, (hazard ratio) HR = 0.46 (p = 0.18). {Percent survival = $[10 - (deaths + mice euthanized)] x 10}$

NUC050 significantly improved survival of mice in xenograft model of NSCLC



The median survival for NUC050 was 33 days compared to 25.5 days for saline, HR = 0.24 (p = 0.039).

NUC052 significantly improved survival of mice in xenograft model of NSCLC



NUCC052, median survival was 34 days compared to 25.5 days for saline, HR = 0.27 (p = 0.033).

NUC050/052 significantly inhibited tumor growth in a mouse xenograft model of NSCLC

- Tumor weights were significantly lower than saline control (p < 0.05) for NUC050 on Study days 14 through 31, while the same is true for NUC052 on study days 14 through 27.
- Tumor weights were significantly lower (p < 0.05) for NUC050 compared to NUC052 on study days 17 through 34.

Discussion

- NUC050 significantly improved survival and inhibited tumor growth after 4 weeks of treatment:
 - The median survival for NUC050 was 33 days compared to 25.5 days for saline, HR = 0.24 (p = 0.039).
 - There was significant inhibition of tumor growth (p < 0.05) compared to saline on study days 14-31.
 - NUC050 was significantly better at inhibiting tumor growth on study days 17-34 than NUC052.
 - All deaths (3) occurred in the subgroup that used the nano-emulsion as a vehicle.
 - Cause of deaths is unknown but may be related to uptake of the drug by the reticuloendothelial system.
- NUC052 significantly improved survival and inhibited tumor growth after 4 weeks of treatment:
 - median survival was 34 days compared to 25.5 days for saline, HR = 0.27 (p = 0.033).
 - There was significant inhibition of tumor growth (p < 0.05) compared to saline on study days 14-27.

Discussion (continued)

- Gemcitabine was used as a positive control, however it was toxic at the doses tested:
 - Dose and regimen based on literature for treatment of H460 (*Anticancer Res.* 2014, 34:6951-6960).
 - There were 7 animal deaths noted on study, which resulted in no significant improvement in animal survival compared to saline control.
 - 1 deaths on dose of 120 mg/kg.
 - 6 deaths on dose of 80 mg/kg.
 - Toxicity complicates assessment of tumor growth inhibition.
 - There was significant inhibition of tumor growth (p < 0.05) on study days 11-31.

CONCLUSIONS

- NUC050 (40 mg/kg IV qwk) and NUC052 (40-50 mg/kg IV qwk) were safe and effective when administered in saline in a xenograft model of NSCLC
 - Both NUC050 and NUC052 significantly improved survival and inhibited tumor growth.
 - Despite literature suggesting that δ -tocotrienol is more effective than δ -tocopherol at inhibition of tumor growth, NUC050 may be more effective than NUC052.
 - The nanoemulsion developed for NUC050 was toxic.
 - It is likely that efficacy would have been improved had all mice only received saline as vehicle.
 - Conclusions about the relative efficacy of NUC050 or NUC052 compared to gemcitabine cannot be drawn because of gemcitabine toxicity.

Future directions

A study has been initiated in a mouse pancreatic cancer xenograft model with a tumor moderately resistant to gemcitabine, MiaCaPa-2

This study is comparing:

- Gemcitabine 60 mg/kg IP q3d
- NUC050 40 mg/kg IV qwk
- NUC052 50 mg/kg IV qwk

ACKNOWLEDGMENTS

This work was funded in part by the Life Sciences Discovery Fund (Seattle, WA, USA) and by the Amorchem Venture Fund (Montreal, QC, Canada).

I also wish to thank Excelvite (Chemor, Malaysia) for donation of the δ -tocotrienol.

