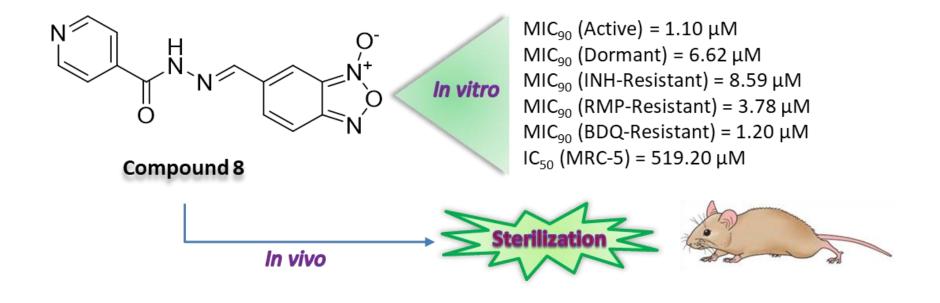


3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde

sponsored by
pharmaceuticals

Synthesis and Anti-*Mycobacterium tuberculosis* Activity of *N*-oxide Containing Heterocycles

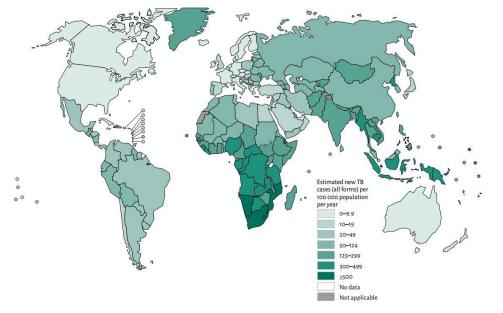

Guilherme Fernandes ^{1,2*}, Paula Souza ², Fernando Pavan ² and Jean Leandro dos Santos ^{1,2}

¹ Institute of Chemistry, UNESP – Univ Estadual Paulista, Araraquara, Brazil;
 ² School of Pharmaceutical Sciences, UNESP – Univ Estadual Paulista, Araraquara, Brazil.

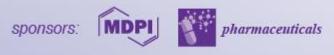
* Corresponding author: guilhermefelipe@outlook.com

Synthesis and Anti-*Mycobacterium tuberculosis* Activity of *N*-oxide Containing Heterocycles

Abstract: Tuberculosis, caused by the *Mycobacterium tuberculosis* (*Mtb*), is the infectious disease responsible for the highest number of deaths worldwide. Herein, 22 new N-oxidecontaining compounds were synthesized followed by in vitro evaluation of their antitubercular potential against Mtb. The compounds demonstrated MIC₉₀ values ranging from 0.40 to 62 μ M. Among the different heterocyclic compounds containing N-oxide, the benzofuroxan derivative 8 was found to be the most promising compound, with MIC_{an} values of 1.10 and 6.62 µM against active and non-replicating *Mtb*, respectively. Compound 8 was also active against monoresistant strains. Moreover, we performed in vivo experiments to confirm the safety and efficacy of compound 8; the compound was found to be orally bioavailable and highly effective leading to the reduction of the number of *Mtb* to undetected levels in a mouse model of infection. Microarray-based initial studies on the mechanism of action revealed an upregulation of a number of transcripts encoding proteins belonging to both small and large subunits of the ribosome, suggesting that compound 8 blocked the process of translation. Altogether, these results indicated benzofuroxan derivative 8 to be a promising lead compound for the development of a novel chemical class of antitubercular drugs.

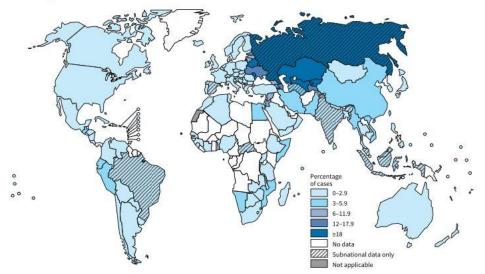

Keywords: furoxan; benzofuroxan; quinoxaline 1,4-di-*N*-oxide; tuberculosis; antituberculosis agents.

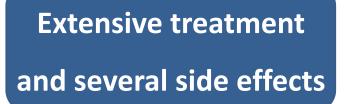
Tuberculosis



WORLD HEALTH ORGANIZATION. Global tuberculosis report 2016

Mycobacterium tuberculosis

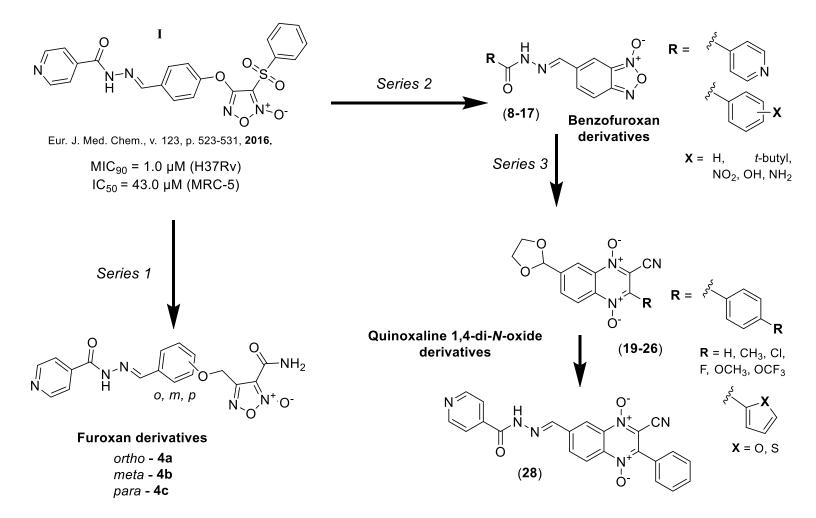

- Infectious disease responsible for the largest number of deaths worldwide
- 2 million deaths in 2015
- 9.6 million new cases in 2015
- > 12% of new cases in HIV-positive patients
- One third of the world's population infected



Multidrug-Resistant Tuberculosis

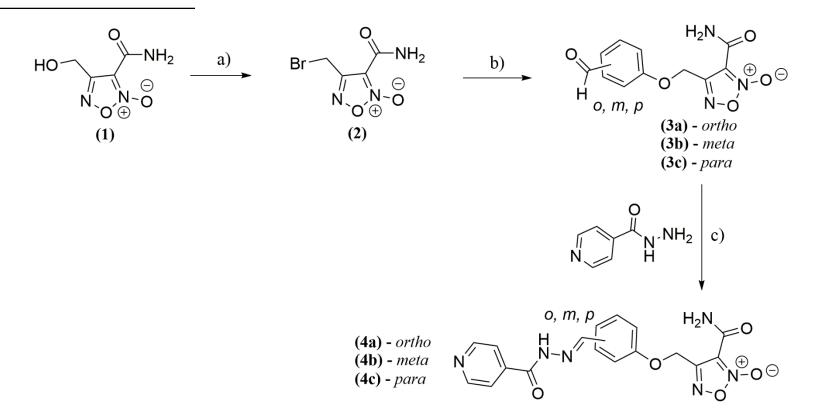
Percentage of new TB cases with MDR-TB^a

WORLD HEALTH ORGANIZATION. Global tuberculosis report 2015



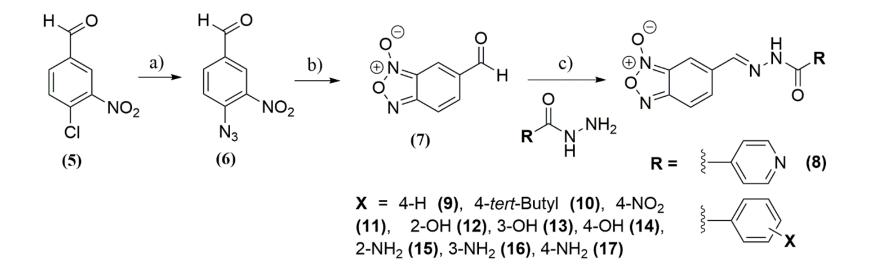
- 480,000 cases of MDR-TB incidents in
 2014
- 190,000 deaths from MDR-TB and 2014
- Only 50% of patients were successfully treated in 2014
- 9.7% of MDR-TB were in fact XDR-TB

Structural Design



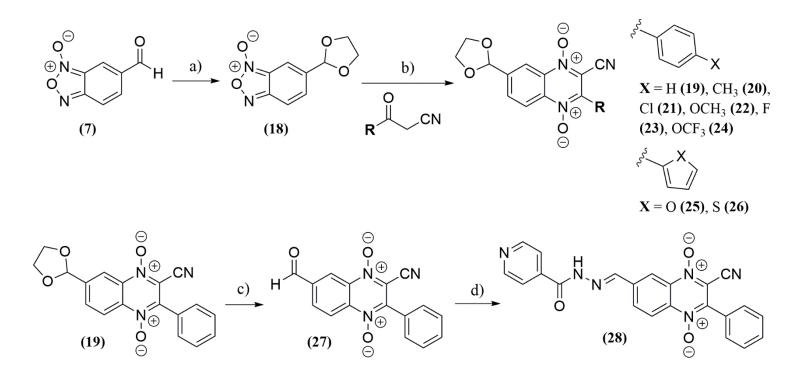
FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

Chemistry


Scheme 1. Reagents and conditions: (a) thionyl bromide, DMF, r.t., 30 min; (b) DBU, 2, 3 or 4-hydroxybenzaldehyde, DCM, r.t., 1 h; (c) ethanol, acetic acid, r.t., 12 h.

FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

Chemistry


Scheme 1. Reagents and conditions: (a) NaN₃, DMSO, 75 °C, 1 h; (b) toluene, reflux, 2h; (c) aromatic hydrazide, ethanol, acetic acid, r.t., 12 h.

FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

Scheme 1. Reagents and conditions: (a) toluene, ethylene glycol, *p*-toluenesulfonic acid, reflux, 12 h; (b) DCM, K_2CO_3 , 40 °C, 96 h; (c) acetone, HCl, r.t., 48 h; (d) isonicotinohydrazide, ethanol, acetic acid, r.t., 12 h.

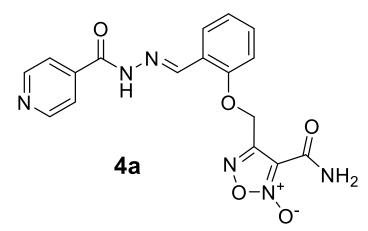
FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

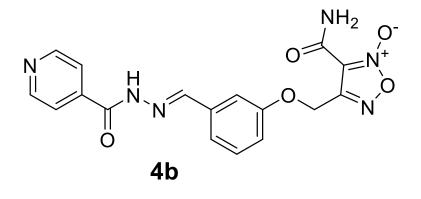
Results and discussion > Initial screening

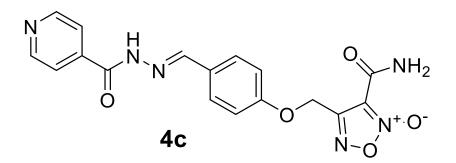
	Compound	MIC ₉₀ (μM) – H ₃₇ Rv	IC ₅₀ (μM) for MRC-5	SI	MIC ₉₀ (μM) – Dormant TB	LogP
1	4a	0.42	854.00	2033.30	7.72	1.3
ł	4b	0.40	1281.90	3204.70	4.20	1.3
ł	4c	0.43	1159.50	2696.50	2.04	1.3
i.	88	1.10	519.20	472.0	6.62	1.5
	9	8.30	130.40	15.60	-	2.2
	10	3.90	25.20	6.30	-	3.8
	11	5.29	-	-	-	0.9
	12	> 62.0	-	-	-	1.3
	13	> 62.0	-	-	-	1.2
	14	> 62.0	-	-	-	1.2
	15	12.30	122.40	9.90	-	2.0
	16	17.80	82.10	4.60	-	1.4
	17	10.66	841.0	78.90	>10.0	1.2

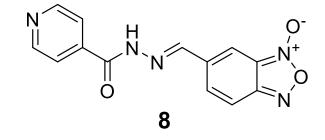
FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

Results and discussion > Initial screening


Compound	MIC ₉₀ (μM) – H ₃₇ Rv	IC ₅₀ (μM) for MRC-5	SI	MIC ₉₀ (μM) – Dormant TB	LogP
19	30.80	31.90	0.90	-	0.7
20	16.50	17.20	1.10	-	1.6
21	16.20	12.60	0.80	-	1.8
22	12.00	15.00	1.20	-	1.4
23	24.30	21.80	0.90	-	1.3
24	15.40	66.80	4.30	-	2.2
25	5.20	35.70	6.80	-	2.0
26	12.10	17.30	1.40	-	1.9
28	39.70	21.00	0.50	-	1.0
Isoniazid	0.1	-	-	-	-
Rifampicin	0.1	-	-	-	-


FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.





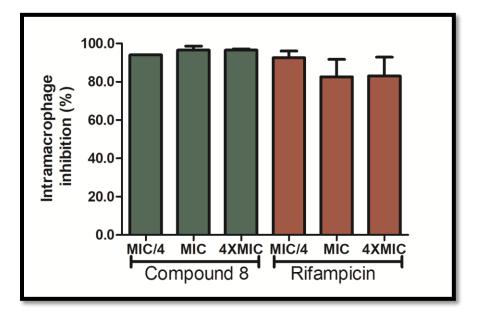
Results and discussion

FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

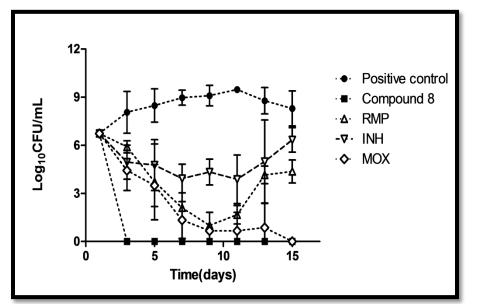
Results and discussion

- Benzofuroxan derivatives 9-17 and quinoxaline derivatives 19-28 were not active against MTB or were very cytotoxic;
- > Amide furoxan series: ortho 4a, meta 4b and para 4c have shown promising activity against MTB with MIC_{90} values below 0.43 μ M. The same was observed for benzofuroxan derivative 8, which presented MIC_{90} value of 1.1 μ M;
- The MIC₉₀ values of these four compounds (4a-c; 8) were greater than several first and second line antitubercular drugs, such as pyrazinamide (>48 μM), cycloserine (245 μM) and kanamycin (3.4 μM);
- > Additionally, these four compounds (**4a-c**; **8**) showed activity against dormant MTB with MIC_{90} values ranging from 2.04 7.72 μ M.

Results and discussion > *Monoresistant strains*


	Compound	MIC ₉₀ (μM) – INH resistant	MIC ₉₀ (μM) – RMP resistant	MIC ₉₀ (µM) — MOX resistant	MIC ₉₀ (μM) – BDQ resistant	MIC ₉₀ (μM) – CAP resistant	MIC ₉₀ (μM) – SM resistant
	4a	>261.71	0.44	0.81	0.81	>261.71	27.4
	4b	>261.71	2.31	1.22	2.56	>261.71	>261.71
_	4c	>261.71	1.99	0.66	6.38	>261.71	>261.71
Ī	8	8.59	3.78	5.72	1.20	15.25	16.98
•	RFP	0.01	>1.00	0.10	0.04	0.21	0.03
	INH	>5.0	0.35	0.28	0.23	>5.00	>5.00
	MOX	0.23	0.12	>8.00	0.26	0.35	0.36
	BDQ	0.01	0.01	0.06	1.70	0.06	0.06
	САР	-	-	-	-	60.46	1.72
	SM	-	-	-	-	2.55	>100

^{*a*} RIF = rifampicin; INH = isoniazid; MOX = moxifloxacin; BDQ = bedaquiline; CAP = capreomycin; SM = streptomycin.



Results and discussion > Further evaluation

Intramacrophage activity of compound 8

Time-kill curves of compound 8

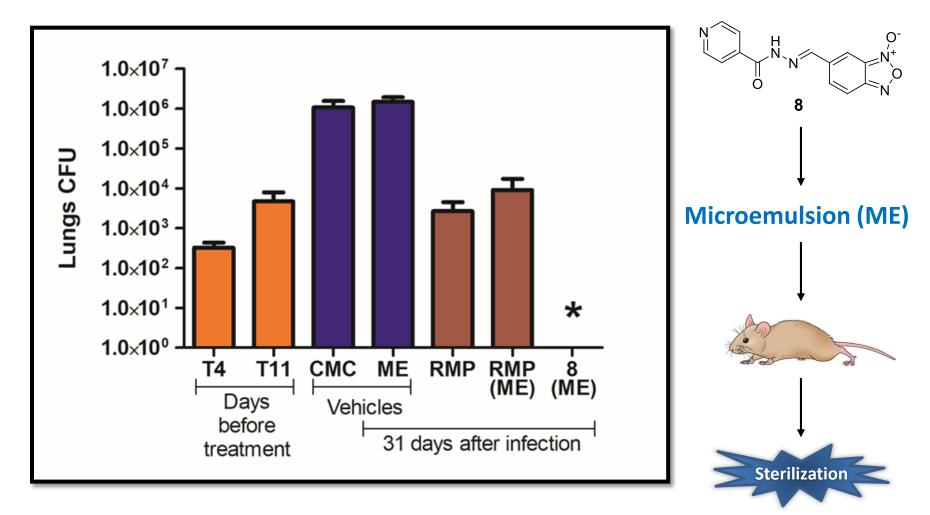
FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

Results and discussion > Further evaluation

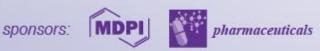
In vitro chemical stability of compound 8

In vivo micronucleus assay for compound 8

FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.


Results and discussion

- Intramacrophage inhibition assay revealed that benzofuroxan derivative 8 exhibited a high intracellular inhibition at all concentrations tested (around 90%);
- Time-kill kinetic experiments showed that compound 8 is bactericidal with an early bactericidal effect. Additionally, the benzofuroxan 8 was able to sterilize the cultures after 48 h of exposure;
- Compound 8 was stable at pH 7.4 and 5.5 being degraded around 20% and 30% after 24 hours, respectively;
- Micronucleus assay using mouse peripheral blood reticulocytes showed that compound 8 was not genotoxic at all concentrations tested.



Results and discussion > In vivo efficacy

FERNANDES, G.F. et al. Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. J. Med. Chem. 2017.

Conclusions

- Compound 8 showed MIC₉₀ value of 1.10 μM against MTB H37Rv and IC₅₀ of 519 μM against MRC-5 cells. Additionally, compound 8 was active against dormant *M. tuberculosis* and several monoresistant strains;
- Compound 8 was active against intracelular mycobacteria and showed bactericidal effect in the time-kill experiments. Moreover, compound 8 was stable at pH 7.4 and 5.5 and was not genotoxic in the micronucleus assay;
- In vivo infection model revealed that compound 8 was able to sterilize the M. tuberculosis from mice lungs;
- The results described herein pointed out compound 8 as a promising lead compound for the treatment of TB infection including against resistant strain.

Acknowledgments

