Novel N-(2-mercaptobenzenesulfonyl)guanidine derivatives modified by nitrogene-containing heterocycles – synthesis and antiproliferative activity against human cancer cell lines

Aneta Pogorzelska¹, Jarosław Sławiński¹, Anna Kawiak^{2,3}, Joanna Jasińska¹ ¹Medical University of Gdansk, Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Department of Organic Chemistry ² Intercollegiate Faculty of Biotechnology UG-MUG, Department of Biotechnology ³ Medical University of Gdansk, Faculty of Health Sciences, Department of Human Physiology

INTRODUCTION:

Benzenesulfonylguanidine derivatives inhibit growth of humar cancer cells belonging to different tumor types [1-3], and can consequently serve as the basis for the development of novel anticancer agents. Continued our research for searching new antiproliferative compounds bearing benzenesulfonylguanidine scaffold, we

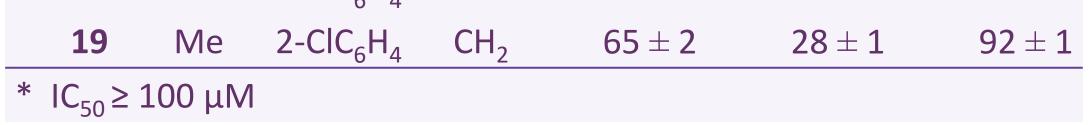
designed and synthesized the series of derivatives modified by important pharmacophore such as morpholine, 4-methylpiperazine and piperidine.

SYNTHESIS:

The planned *N*-(2-mercaptobenzenesulfonyl)guanidine (**9-27**) have been obtained by reaction of *N*-(2-mercaptobenzenesulfonyl)cyanamide potassium salts (**1-8**) with 1-aminopiperidine, 4-aminomorpholine or 1-amino-4-methylpiperazine, using 4-toluenesulfonic acid (PTSA) as a protonating agent. The synthesis were carried out in anhydrous toluene or *p*-dioxane in ACE pressure tube (Sigma-Aldrich). The temperature of oil bath was 110 °C. The reactions lasted for 1-24 h, and, in most cases, the yields were higher than 50 %. The structures of new compounds were confirmed by spectroscopic methods, IR and ¹H NMR, as well as elemental analyses.

R2		P 2	Nr	R ¹	R ²	R ³	Nr	R ¹	R ²	R ³	Nr	R ¹	R ²	R ³
			9	Me	Ph	0	17	Me	$2-FC_6H_4$	CH ₂	23		Ph	0
Cl Ś v Đ	$H_2 N - N R^3$	Cl	11	Me	Ph	CH ₂	16	Me	$2-FC_6H_4$	NMe				
$\int \int \nabla \nabla$	PTSA	Η Η	10	Me	Ph	NMe	18	Me	$2-CIC_6H_4$	Ο	24	N-N	Ph	NMe
R ¹ S CN	anh. toluene	$R^1 \longrightarrow S \longrightarrow N \longrightarrow N$	12	Me	$2-CF_3C_6H_4$	0	19	Me	$2-CIC_6H_4$	CH ₂	25		$2-CIC_6H_4$	CH ₂
0 ~ 0	or anh. <i>p</i> -dioxane	0^{\prime} 0^{\prime} 1^{\prime} 1^{\prime} R^{3}	14	Me	$2-CF_3C_6H_4$	CH ₂	21	Me	$2-CIC_6H_4$	NMe	20			
1-8		9-27	13	Me	$2-CF_3C_6H_4$	NMe	20	Me	$2-MeC_6H_4$	0	26	→ N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/	$2-CIC_6H_4$	NMe
			15	Me	$2-FC_6H_4$	0	22	Me	$2-MeC_6H_4$	CH ₂	27	N-N	$2-MeC_6H_4$	CH ₂

CYTOTOXIC ACTIVITY:


Compounds **9-27** have been studied *in vitro* for their antiproliferative activity against three human cancer cel lines: colon cancer HCT-116, breast cancer MCF-7 and cervical cancer HeLa. Evaluations were made by MTT assays and incubation time was 72 h. The experiment was performed in triplicate and, as a result, IC₅₀ values were estimated as the mean ± SD.

The obtained results indicate that R³ modification is the most important for cytotoxic effect. It may be statement that *N*-methylpiperazine residue is essential for antiproliferative activity. Derivatives **17**, **20**, **24** and **26** display the best anticancer activity, with IC₅₀ values lower than 20 μ M against three tested cel lines. An exception is compound **14**, which displays slightly higher activity toward two lines HCT-116 (IC₅₀ = 17 μ M) and HeLa (IC₅₀ = 13 μ M), as well as compound **11** with IC₅₀ in the range of 20-35 μ M against all studied cell lines.

Compounds with piperidine fragment display moderate activity. In this series only **13** and **25** do not display significant cytotoxic effect. Other derivatives **10**, **16**, **19**, **22** and **27** inhibit the growth of at least two cancer cel lines with IC₅₀ from 17 to 92 μM. Additionally, compounds with piperidine residue are slightly more selective toward HCT-116, which is quite clear for derivatives **19** and **27**.

From the compounds containing morpholine scaffold only **21** and **23** dsiplay some antiproliferative activity. The derivative **20** shows growth inhibition of three tested cellines with IC₅₀ in the range of 43-92 μM. In turn, the compound **23** display significant selective cytotoxic activity against HCT-116 cells with IC₅₀ = 18 μM.

Nr R ¹	D 1	D2	R ³ —	IC ₅₀ [μM]				D 1	D ²	D 3		IC ₅₀ [μΜ]
	K -	R ²	K* -	HeLa	HCT-116	MCF-7	Nr	R ¹	R ²	R ³ –	HeLa	HCT-11	6
9	Me	Ph	0	*	*	*	20	Me	$2-CIC_6H_4$	NMe	16 ± 1	13 ± 0,5	5
10	Me	Ph	CH ₂	*	$\textbf{44} \pm \textbf{0,5}$	44 ± 1	21	Me	$2-MeC_6H_4$	Ο	68 ± 3	43 ± 1	
11	Me	Ph	NMe	20 ± 0,5	35 ± 2	35 ± 2	22	Me	$2-MeC_6H_4$	CH_2	44 ± 1	29 ± 1	
12	Me	$2-CF_3C_6H_4$	0	*	*	*	23	Ph//	Ph	0	*	18 ± 1	
13	Me	$2-CF_3C_6H_4$	CH ₂	*	*	*		N–N		0		10 ± 1	
14	Me	$2-CF_3C_6H_4$	NMe	$\textbf{13} \pm \textbf{0,5}$	17 ± 1	28 ± 1	24	Ph O N-N	Ph	NMe	16 ± 1	15 ± 0,3	
15	Me	$2-FC_6H_4$	0	*	*	*	25	Ph	$2-CIC_6H_4$	CH_2	*	*	
16	Me	$2-FC_6H_4$	CH ₂	45 ± 1	34 ± 2	42 ± 2	26	N–N Ph V	$2-CIC_6H_4$	NMe	16 ± 1	16 ± 0,5	
17	Me	$2-FC_6H_4$	NMe	15 ± 0,5	14 ± 1	15 ± 1		N/////////////////////////////////////	0 4			-	
18	Me	$2-CIC_6H_4$	Ο	*	*	*	27	Ph	2-MeC ₆ H ₄	CH ₂	49 ± 1	17 ± 1	

REFERENCES:

[1] Żołnowska B., Sławiński J., Pogorzelska A. et al. Eur J Med Chem. 2014; 71; 135–147. [2] Brożewicz K, Sławiński J. Eur J Med Chem. 2012; 55; 384–394.
[3] Sławiński J, Bednarski P, Reszka P. Polish J Chem. 2004; 78; 369–379.

3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

