

Synthesis and structural characterization of a novel amine-bis(phenolate)ligand

Laura Rodríguez-Silva*, M. Isabel Fernández-García, Esther Gómez-Fórneas, Sandra Fernández-Fariña, Luis M. González-Barcia and María J. Romero

University of Santiago de Compostela Department of Inorganic Chemistry Spain

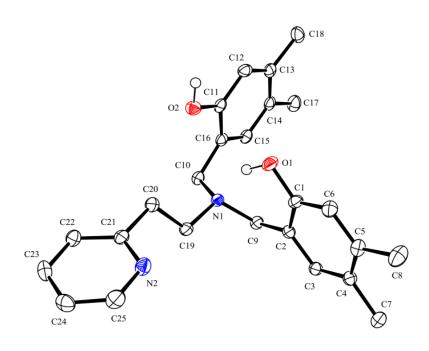
The interest of this ligand ...

This ligand has recently played an increasingly important role in transition-metal catalyst design and modelling of metalloenzyme activesites

amine-bis(phenol) ligand H₂L

The behaviour exhibited by these ligands, mainly due to the potential reduction capacity showed by the chemical group which leads to a great variety of coordination patterns

Designing and Synthesis ...


2 HCHO
$$\Delta$$
HO
HO
HO

Characterization (EA, MS, IR, 1H NMR, X-ray diffraction)

Ligand H₂L: Anal Calc. for $C_{25}H_{30}N_2O_2$: C, 76.8; H, 7.7; N, 7.1. Found: C, 76.9; H, 7.7; N, 7.1%. MS ES (m/z): 391.2; IR (KBr, cm⁻¹): E(O-H) 3266.6, E(C-O) 1284,5, ¹H NMR (CDCl₃, ppm): 8,9 (s br, 2H, OH), 8.6, 7.6, 7.2 and 7,1 (4H pyridine), 6.8 (s, 2H, phenyl), 6.6 (s, 2H, phenyl), 3.7 (s, 2H, CH₂), 3.1 (t, 2H, N-CH₂), 2.9 (t, 2H, C-CH₂), 2.1), (s, 6H, CH₃), 2.0(s, 6H, CH₃). ¹³C NMR (CDCl₃, ppm): 160.4 (pyridine), 155.1(C-OH), 149.5-117.3 (phenyl, pyridine), 54.2 and 52.9 (N-CH₂), 34.5 (CH₂), 19.9 and 10.0 (CH₃).

Designing and Synthesis ...

- > Aminic nitrogen atom adopts a distorted pyramidal geometry.
- > Intra and intermolecular hydrogen bond interactions are observed

Our conclusions...

- ➤ The tetradentate tripodal ligand H₂L has been synthesized and characterized by different techniques, including X-ray diffraction studies.
- ➤ This organic compound is capable of coordinating different metal centres, leading different topologies, for instance, leaving two *cis* positions in octahedral geometries or imposing C₃ symmetry in fourand five-coordinate metal centres.