

Solvent free microwave assisted synthesis of 1,3,5-tris(2aryloxyethyl)isocyanurates

Julio A. Seijas,* M. Pilar Vázquez-Tato,* Silvia Fernández-Sánchez, José Crecente-Campo.

Departamento de Química Orgánica. Facultad de Ciencias. Universidad de Santiago de Compostela. Campus de Lugo. Aptdo. 280. 27080-Lugo. Spain

julioa.seijas@usc.es, pilar.vazquez.tato@usc.es

Abstract

Synthesis of 1,3,5-tris(2-aryloxyethyl)isocyanurates by esterification of 1,3,5-tris(2-hydroxyethyl)isocyanurate under microwave irradiation in a direct and efficient way in solvent free conditions.

Introduction

1,3,5-tris(2-hydroxyethyl)isocyanurate (THECA) is a common additive in the preparation of polymers. However its use is not limited to this field. It has been used too in the building up of dendritic structures¹, tripodands,² or compound. ³ Item in of the synthesis dendrimers the cage perfunctionalization constitutes an important.⁴ In this regard, microwave assisted chemistry is a useful tool in the transformation of functional groups.⁵ The C₃ symmetry of THECA esters gives a characteristic shape to this compounds that resembles the Celt symbol triskelion.⁶

Results and discussion

As model reaction, esterification of benzoic acid and THECA were studied. Previously, we had established the suitability of toluene sulphonic acid to catalyze this reaction for aliphatic acids under microwave irradiation.⁷

Thus, benzoic acid (2) was irradiated in the presence of THECA (1) (3:1 molar ratio) in the presence of a 5 mol% of p-TsOH, the temperature was set to 160°C and the irradiation was carried out in an open vessel for 20

minutes (200W power setting). The crude was purified by column chromatography to yield 83% of triester **3** (Scheme 1).

Scheme 1

When, the aromatic ring has a deactivating group as chlorine in *para* position, the ester **5** was obtained in 88% yield after irradiation for 25 minutes at 160°C (Scheme 2).

Meanwhile, the esterification with p-anisic acid (containing an activating group) took place only in 10 minutes (75% yield of triester **7**, scheme 3).

General experimental procedure

Synthesis of triester **3**. A mixture of 1,3,5-Tris(2-hydroxyethyl)isocyanurate (**1**) (0.150 g, 0.57 mmol), benzoic acid (**2**) (0.534 g, 4.2 mmol) and *p*-TsOH (5.6 mg) were irradiated in a monomode microwave oven (CEM, Discover) at 160°C for 20 minutes (power 200 W). The crude of reaction was purified through a silica gel column (CH₂Cl₂:MeOH, 9.8:0.2) yielding **3**, as an oil (0.270 g, 83%).

¹H-NMR (300 MHz, CDCl₃) δ: 8.51 (d, 2H, J= 7.07 Hz, ArH), 7.51 (t, 1H, J= 7.25 Hz, ArH), 7.38 (d, 2H, J= 7.47 Hz, ArH), 4.45 (t, 2H, J= 4.84 Hz, OCH₂), 4.26 (t, 2H, J= 4.84 Hz, NCH₂).
IR (*Golden Gate*): 1714 (COO), 1681 (C=O), 1450, 1271, 1114, 1070, 1026, 758, 712.

Acknowledgements

XUNTA DE GALICIA for financial support: INCITE09 262346PR.

REFERENCES

¹ Mansour, S. H.; Rozik, N. N.; Dirnberger, K.; Ikladious, N. E. J. Pol. Sci.: Part A: Polymer Chemistry **2005**, 43, 3278–3288.

² Piron, F.; Oprea, C.; Cismas, C.; Terec, A. M.; Roncali, J.; Grosu, I. *Synthesis* **2010**, 1639-1644.

³ Mascal, M. US Patent US 7723322, 2010, Chem Abstr. CAN 147:401103.

⁴Vögtle, F.; Fakhrnabavi, H.; Lukin O. *Org. Lett.*, **2004**, *6*, 1075–1078.

⁵ *Microwaves in Organic Synthesis. 2nd edition*. A. Loupy editor. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2006.

⁶ Seijas, J. A.; Vázquez-Tato, M. P.; Crecente-Campo, J.; Carballo-Meilán M. A. 11th International Electronic Conference on Synthetic Organic Chemistry. e009, www.usc.es/congresos/ecsoc/, 2007.

⁷ Crecente-Campo, J.; Fernández-Sánchez, S.; Seijas, J. A.; Vázquez-Tato, M. P. 14th International Electronic Conference on Synthetic Organic Chemistry. e006, <u>www.usc.es/congresos/ecsoc/</u>, 2009