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Abstract: Mobile robots are faced with problems (for ex. path planning) with many alternative
solutions (ex. paths) based on several factors, and they must make a selection by quantifying the
factors and mathematically evaluating the alternative solutions. Robot path planning is an integral
process of mobile robots. A shortest path is generally chosen, however, it is not necessarily the
optimal path. Apart from the distance between the start and goal locations, a robot must consider
several other factors like the bumpiness, steepness, and crowd on the path. Robots are equipped
with sensors like cameras, inertial sensors, and distance sensors to measure these factors. Different
paths could be generated between the same start and goal locations considering these factors. The
robot must select the optimal path from many paths. The factors which influence the generation of
such paths can be dynamic. In this paper we propose to use Fuzzy Analytical Hierarchical Process
(Fuzzy-AHP) to analytically select the optimal path from different paths. Fuzzy-AHP provides two
navigational approaches, namely, defensive and offensive approaches which can be taken by mobile
robots for navigation. In this paper, we present a case study of robot path selection with Fuzzy-AHP.
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1. Introduction

A mobile robot continuously makes decisions: for ex. to stop or turn to avoid collision, to increase
or decrease speed, or to make way for other people. For navigation to service locations, it needs to plan
a path from its current location to the goal location. Many algorithms like A-star, D-star, Probabilistic
Roadmap, Rapidly-exploring random tree, Dijkstra, and other planners have successfully been used
for path planning [1]. Most of these planners generate a shortest path from the start location to the
goal location. However, the shortest path is not necessarily the best (for ex. safest) path. Apart from
the distance between the start and goal locations, a robot must consider several other factors like the
bumpiness (i.e. terrain roughness), steepness, and crowd[2] on the path.

This is shown in Figure 1 where a robot must select a path from start to goal locations considering
several factors. Depending on the sensors used by the robots, other factors like the brightness of the
path, for ex. in case of vision sensors, must also be considered. Robots are equipped with sensors
like cameras, inertial sensors, and distance sensors to measure these factors. For example, inertial
sensor like IMU is used to map the roughness of the terrain. Stereo cameras are used to detect people
on the path and estimate the crowd. RGBD sensors (ex. Microsoft Kinect) can be used to estimate
the steepness of the path. Generally, a map [3] is available to the robot in which areas like bumpy
road, and steep paths can be marked beforehand. Factors like crowd on the path can be estimated in
real-time. There could be different paths between the same start and goal locations, and the robot must
select the optimal path from many paths. The factors which influence the generation of such paths can
be dynamic. Moreover, each factor has a varying degree of influence on the selection of path by the
robot, which too varies from robot to robot.
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Figure 1. Selecting an optimal path from different paths based on several parameters.

In such situations, selecting a particular path based on a rigorous mathematical analysis which
validates the particular selection becomes necessary. We show that Fuzzy Analytical Hierarchical
Process (Fuzzy-AHP) can be used in such situations to make the optimal selection of the path
considering multiple factors. AHP was originally proposed by Saaty [4] and has been employed
widely in multiple criteria decision making problems involving robots [5–7]. AHP has extensively
been explained in the work of Alam et al. [8]. We demonstrate the process step-by-step by taking a
case study of path selection.

2. Brief Explanation of AHP

Readers may find the detailed explanation of AHP in [4,8,9]. A very brief overview is presented
here, and AHP will be explained by taking a concrete use case. There are three components of AHP: (1)
Hierarchy construction, (2) Priority analysis, and (3) Consistency verification. For a given problem, if
there are n factors F1, F2, · · · , Fn and their weights (importance) are indicated as w1, w2, · · · , wn, the
pairwise comparison of evaluation factors can be represented as a matrix:
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In matrix A, Aij =
1

Aji
for the factors. In AHP, the pairwise comparison matrices for each of the

factors Fi, i ∈ n is determined individually. Later, the overall evaluation of alternatives is determined.
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Figure 2. Hierarchy Chart.

Thus, in AHP once the hierarchy is built, the various elements are compared to each other in terms
of their impact with other elements in the hierarchy [10]. This comparison often involves human
judgments in performing the evaluations.

3. Use Case: Applying AHP for Path Planning

We now consider a concrete case of optimal path selection by robot. It is assumed that the robot
has the map of the environment [3,11] in which the obstacles and open areas have been marked. We
first start with the hierarchy chart shown in Figure 2. The hierarchy chart shows the topic: ‘Path
Planning from Location X to Y’. There are 4 evaluation factors: (1) Safety of path, (2) Steepness of path,
(3) Traffic on path, and (4) Bumpiness or roughness of the path. Based on these factors, it is assumed
that the robot has three path alternatives: (1) Path A, (2) Path B, and (3) Path C. These paths can be
generated by using any of the path planning algorithms [1,12]. The goal is to find the best path.

A score is given corresponding to each degree of importance. As an example, five different scores
are allotted as shown in Table 1.

Table 1. Degree of Importance and corresponding Scores.

Degree of Importance Score

Same Importance 1
Little More Important 3
Very Important 5
Extremely Important 7
Absolutely Important 9

Table 2 shows the comparison of evaluation factors. This is done by a human and values are
manually stored in the robot. In this use case, it is assumed that ‘safety’ has the highest priority and the
robot has difficulty to navigate over a steep terrain. Therefore, in Table 2, the element corresponding
to Safety-Steepness is 9, as safety is ‘absolutely important’ when compared to steepness. Similarly,
the other elements of the matrix are filled. A geometric mean is calculated by taking the nth root of
the product of scores, as explained in Section 2. Later, the weights are normalized. The ‘Accountable
Degree’ is calculated by dividing each element of the normalized weights by the maximum normalized
weight, and is marked in gray color in Table 2.

The next step involves weight evaluations for each of the individual factors. Since there are 4
factors, the weight evaluations for safety, steepness, crowd, and bumpiness are given in Table 3, 4, 5,
and 6, respectively. The normalized weights of each evaluation is shown in Table 7 in different colors.
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Table 2. Comparison of Evaluation Factors

Safety Steepness Crowd Bumpiness
Geometric
Mean

Normalized
Weight

Accountable
Degree

Safety 1 9 3 5 3.408 0.581 1.000

Steepness 1/9 1 1/5 1/3 0.293 0.050 0.086

Crowd 1/3 5 1 3 1.495 0.255 0.436

Bumpiness 1/5 3 1/3 1 0.668 0.114 0.196

Table 3. Weight Evaluation for ‘Safety’

Path A Path B Path C Geometric Mean Normalized Weight

Path A 1 3 3 2.080 0.552
Path B 1/3 1 1/7 0.362 0.096
Path C 1/3 7 1 1.326 0.352

Table 4. Weight Evaluation for ‘Steepness’

Path A Path B Path C Geometric Mean Normalized Weight

Path A 1 1/5 1/7 0.306 0.072
Path B 5 1 1/3 1.186 0.279
Path C 7 3 1 2.759 0.649

Table 5. Weight Evaluation for ‘Crowd’

Path A Path B Path C Geometric Mean Normalized Weight

Path A 1 5 1/3 0.405 0.110
Path B 1/5 1 1/9 0.281 0.076
Path C 3 9 1 3.000 0.814

Table 6. Weight Evaluation for ‘Bumpiness’

Path A Path B Path C Geometric Mean Normalized Weight

Path A 1 1/9 1/5 0.281 0.063
Path B 9 1 3 3.000 0.672
Path C 5 1/3 1 1.186 0.265

Table 7. Evaluation Score of Alternatives

Safety Steepness Crowded Bumpiness

Path A 0.552 0.072 0.110 0.063
Path B 0.096 0.279 0.076 0.672
Path C 0.352 0.649 0.814 0.265
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Figure 3. L-Evaluation (Lower Model). Figure is not to scale
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Figure 4. U-Evaluation (Upper Model). Figure is not to scale

4. Results

The normalized weights of the compared evaluation factors shown in Table 7 are plotted against
the values of ‘Accountable Degree’ shown in gray color in Table 2. The boundary region for each of
the alternatives from Lower Model (called L-Evaluation) and Upper Models (called U-Evaluation) are
calculated. The L-Evaluation is used for a ‘defensive’ approach, whereas the U-Evaluation is used for
an ‘offensive’ approach by the robot.

The L-Evaluation and U-Evaluation plots are shown in in Figure 3 and Figure 4, respectively. The
total area under the curve for each alternative is calculated in both the models. In the L-Evaulation,
Path-A has an area of 0.348 units, Path-B has an area of 0.087 units, and Path-C has an area of 0.335
units. Similarly, in the U-Evaluation, Path-A has an area of 0.552 units, Path-B has an area of 0.190
units, and Path-C has an area of 0.400 units. In both the models, Path-A scores the maximum area ,
and therefore, Path-A is selected by the robot to navigate in both defensive and offensive approaches.
If Path-A cannot be used (for ex. due to some dynamic obstacle), then Path-C will be selected by the
robot to navigate towards its goal.

5. Conclusions

Mobile service robots are always making some decision or the other and must select the best
option from multiple alternatives governed by different factors. In such cases, validating a particular
selection based on a rigorous mathematical analysis by quantifying the factors is necessary. Analytical
Hierarchical Process can be used in such situations to make the optimal selection. This paper presented
a case study of path selection by a robot from several alternative paths based on factors like safety,
steepness, crowd, and terrain roughness. It should be noted that AHP does not give a ‘correct’ decision,
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but rather helps in decision making by finding the best alternative which best suits the goal by
incorporating human judgment in the process.
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